www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - orthog. Komplement
orthog. Komplement < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

orthog. Komplement: Anleitung für Dummies gesucht
Status: (Frage) beantwortet Status 
Datum: 17:14 Fr 26.05.2006
Autor: juliana

Aufgabe
Man bestimme eine Basis für das orthogonale Komplement [mm] U^{ \perp} [/mm] (bezüglich des Standardskalarproduktes) in  [mm] \IR^{4} [/mm] von
U=span  [mm] \{ \vektor{1 \\ 2\\0\\3}, \vektor{2 \\ 4\\1\\6} \}. [/mm]

Hallo! :-)

Ich habe keine Ahnung, wie das funktioniert und bin für jede Hilfe dankbar..

Ganz vielen, lieben Dank im Voraus

Juliana

        
Bezug
orthog. Komplement: Antwort
Status: (Antwort) fertig Status 
Datum: 18:25 Fr 26.05.2006
Autor: Riley

Hi Juliana!
also du hast die basis von U = { a, b} mit a= [mm] (a_1,a_2,a_3,a_4)^t [/mm] und [mm] b=(b_1,b_2,b_3,b_4)^t. [/mm]

die Basis von [mm] U^{ \perp} [/mm] bekommst du hiermit:
[mm] U^{ \perp} [/mm] = [mm] {a}^{\perp} \cap {b}^{\perp} [/mm]

und [mm] {a}^{\perp} [/mm] = { y aus [mm] R^4 [/mm]  |   [mm] \beta(a,y) [/mm] = 0} = { y| [mm] a_1y_1 [/mm] + [mm] a_2y_2+a_3y_3+a_4y_4=0 [/mm]   }

da ja [mm] \beta(x,y) [/mm] = [mm] x_1y_1 [/mm] + [mm] x_2y_2+x_3y_3+x_4y_4 [/mm] dein Standardskalarprodukt ist.

entsprechend für
[mm] {b}^{\perp}= [/mm] {  [mm] y|b_1y_1+b_2y_2+b_3y_3+b_4y_4=0 [/mm]  }

durch diese beiden Gleichungen bekommst du ein LGS, dessen Fundamentallösung ist die gesuchte Basis.

jetzt musst du nur deine vektoren einsetzen...

viele grüße
Riley :-)


Bezug
                
Bezug
orthog. Komplement: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:53 Fr 26.05.2006
Autor: juliana

Hallo Riley!
Erstmal vielen Dank für deine Antwort. :-)

Könntest du mir vielleicht noch erklären, was
[mm] a^{ \perp} \cap b^{ \perp} [/mm] bedeutet?

Lieben Gruß
Juliana

Bezug
                        
Bezug
orthog. Komplement: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:09 Fr 26.05.2006
Autor: Sir_E

Wenn ich die Vorlesung bei der Plonka :-) (stimmt doch oder?)und die Antwort von Riley richtige verstanden hab sind das genau die Vektoren, die auf a UND b senkrecht stehen bzgl. des Standardskalarprodukt.


Bezug
                                
Bezug
orthog. Komplement: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:18 Fr 26.05.2006
Autor: juliana

stimmt genau...habe mir gerade die testaufgaben für die klausur runtergeladen und wusste nicht mehr weiter :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de