www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - orthogonale Basis+kompl. Matri
orthogonale Basis+kompl. Matri < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

orthogonale Basis+kompl. Matri: Frage, dringend!!!
Status: (Frage) beantwortet Status 
Datum: 23:04 Mi 10.11.2004
Autor: ankiza

Hallo
ich habe Schwierigkeiten mit folgender Aufgabe:
Finde in [mm] C^2 [/mm] eine orthogonale Basis bezgl. des durch die Matrix

A =   1   -i
        -i    2       gegebenen Pseudoskalarprodukts.

Ich würde jetzt ganz naiv erstmal eine Basis suchen mit <vi,vj>=aij,
aber das kann mit dieser Matrix ja gar nicht gehen, wegen <vi,vj>= <vj,vi>
konjugiert. Dann müsste einer der Einträge i statt -i sein, oder?
Vielen Dank schon mal, Ankiza
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
orthogonale Basis+kompl. Matri: Pseudo!
Status: (Antwort) fertig Status 
Datum: 09:48 Do 11.11.2004
Autor: Gnometech

Hallo Anzika!

Das Schlüsselwort hier ist "Pseudo"-Skalarprodukt. Durch die Matrix, wird eine Bilinearform auf [mm] $\IC^2$ [/mm] induziert - oder auch eine Sesquilinearform, je nachdem, welche Definition man zugrunde legt:

[mm] $\langle [/mm] u , v [mm] \rangle_A [/mm] = [mm] u^t [/mm] A v$

ODER

[mm] $\langle [/mm] u , v [mm] \rangle_A [/mm] = [mm] u^t [/mm] A [mm] \bar{v}$ [/mm]

Das müßtest Du aus Deiner Vorlesung entnehmen, was jeweils gemeint ist. Im ersten Fall ist die Matrix symmetrisch, im zweiten Fall ist sie nicht "schiefsymmetrisch" (so haben wir es genannt, wenn [mm] $A^t [/mm] = [mm] \bar{A}$ [/mm] gilt).

Daher würde ich aus dem Kontext heraus schließen, dass die erste Definition gemeint ist. Du hast also eine Bilinearform auf [mm] $\IC^2$, [/mm] die KEINE Norm induziert, da der Begriff "positiv definit" für komplexe Werte nicht mal viel Sinn macht! Trotzdem kannst Du von einer orthogonalen Basis reden, also von zwei Vektoren [mm] $v_1, v_2 \in \IC^2$ [/mm] mit der Eigenschaft: [mm] $\langle v_1, v_2 \rangle_A [/mm] = 0$

Naja und linear unabhängig sollten sie außerdem sein...

Viel Glück!

Lars


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de