www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - orthogonale hyperebene
orthogonale hyperebene < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

orthogonale hyperebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:20 Mi 27.08.2008
Autor: vivo

Hallo,

wenn eine Vektor b gegeben ist, wie bekomme ich dann am besten die zu b orthogonale hyperebene mit dim = n-1 ?

Also den Raum, welcher den Kern A darstellt falls A = a [mm] \otimes [/mm] b ist.

danke gruß


        
Bezug
orthogonale hyperebene: Antwort
Status: (Antwort) fertig Status 
Datum: 19:25 Mi 27.08.2008
Autor: XPatrickX


> Hallo,

Hi

>  
> wenn eine Vektor b gegeben ist, wie bekomme ich dann am
> besten die zu b orthogonale hyperebene mit dim = n-1 ?

Dies ist [mm] $E:\langle x,b\rangle [/mm] = 0$
Also alle Vektoren x, die senkrecht zu b stehen.

>  
> Also den Raum, welcher den Kern A darstellt falls A = a
> [mm]\otimes[/mm] b ist.
>  
> danke gruß
>  

Grüße Patrick

Bezug
                
Bezug
orthogonale hyperebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:31 Mi 27.08.2008
Autor: vivo

hi,

danke ... ich meinte jetzt halt die konkrete berechnung ... oder bin ich hier fertig ist (x.b) = 0 die Konkrete angabe ... eben alle vektoren die diese gleichen erfüllen ...

aber wie geht man vor wenn man diese endlich vielen vektoren berechnen will ?

Bezug
                        
Bezug
orthogonale hyperebene: Antwort
Status: (Antwort) fertig Status 
Datum: 20:02 Mi 27.08.2008
Autor: angela.h.b.


> hi,
>
> danke ... ich meinte jetzt halt die konkrete berechnung ...
> oder bin ich hier fertig ist (x.b) = 0 die Konkrete angabe
> ... eben alle vektoren die diese gleichen erfüllen ...
>
> aber wie geht man vor wenn man diese endlich vielen
> vektoren berechnen will ?

Hallo,

geh'n wir in den [mm] \IR^5, [/mm] da waren wir ja schonmal zusammen, wenn ich mich recht entsinne.

Es sei gegeben der Vektor [mm] b:=\vektor{1\\2\\3\\4\\5}. [/mm]

Wie Patrick sagt, ist die Normalenform der zu b orthogonalen Hyperebene <b,x>=0      (spitze Klammern sollen das Skalarprodukt sein).

Ich gehe davon aus, daß wir es hier mit dem gewöhnlichen Skalarprodukt zu tun haben, dann kann man obige Bedingung schreiben als

[mm] \vektor{1\\2\\3\\4\\5}*\vektor{x_1\\x_2\\x_3\\x_4\\x_5}=0 [/mm]

<==>

[mm] 1*x_1+2*x_2+3*x_3+4*x_4+5*x_5=0, [/mm]

und damit hast Du die Koordinatengleichung der gesuchten Hyperebene.

Wenn Du wissen willst, von welchen Vektoren  diese Ebene aufgespannt wird, berechne eine Basis des Lösungsraumes.


Gruß v. Angela



Bezug
                                
Bezug
orthogonale hyperebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:22 Do 28.08.2008
Autor: vivo

vielen dank ...

aber soweit war es mir schon einleuchtend, aber wie komm ich denn jetzt zu einer basis?

Bezug
                                        
Bezug
orthogonale hyperebene: Antwort
Status: (Antwort) fertig Status 
Datum: 00:36 Do 28.08.2008
Autor: andreas

hallo

wie angela schon geschrieben hat, ist das eine lineares gleichungssystem mit nur einer gleichung, du kannst also $n - 1$ variablen frei wählen und erhälst dann bedingungen für die letzte variable.


grüße
andreas

Bezug
                                                
Bezug
orthogonale hyperebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:06 Do 28.08.2008
Autor: Mathefan2008

Ja-ja, ich bin mit dir einverstanden, deine Antworten gefallen mir. Ich glaube wir kennen uns. Wo studierst du? Kannst mir eine private Nachricht schicken. Sorry für Offtop.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de