www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - oszillierende Funktionen
oszillierende Funktionen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

oszillierende Funktionen: Tipp
Status: (Frage) beantwortet Status 
Datum: 10:42 Sa 21.07.2012
Autor: judithlein

Hallo,

ich habe eine Frage zur Oszillation von Funktionen. Und zwar geht es mir im wesentlichen um die Frage der Stetigkeit und Unstetigkeit von solchen Funktionen. Ich habe mir in der Vorlesung notiert, dass z.B. die Funktion

f(x)= [mm] \begin{cases} x^2*sin(\bruch{1}{x}), & \mbox{für } x \not=0 \\ 0, & \mbox{für } x=0 \end{cases} [/mm]

stetig ist, da der Grenzwert für x [mm] \to [/mm] 0 existiert, dieser ist nämlich 0. Das bedeutet die Funktion ist stetig und im Nullpunkt differenzierbar. Nun ist aber die Ableitung der Funktion f(x)

f'(x) = [mm] \begin{cases} 2*x*sin(\bruch{1}{x})-cos(\bruch{1}{x}), & \mbox{für } x \not=0 \\ 0, & \mbox{für } x=0 \end{cases} [/mm]

unstetig. Da hier eben kein Grenzwert existiert, da [mm] -cos(\bruch{1}{x}) [/mm] oszilliert.

Bedeutet das denn, dass ozillierende Funktionen nie stetig sein können? Aber die Funktion [mm] x^2*sin(\bruch{1}{x}) [/mm] oszilliert doch auch und diese ist ja stetig, wie oben beschrieben.

Kann mir das bitte jemand mal erklären?!?

Danke!

LG

        
Bezug
oszillierende Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:58 Sa 21.07.2012
Autor: Diophant

Hallo,

was verstehst du unter []Oszillation?

Wenn du das meinst, was in der Wikipedia steht, und was meiner Kenntnis nach die übliche Wortbedeutung ist, dann hat das doch mit der Stetigkeit überhaupt nichts zu tun.

Sowohl die Funktion f als auch ihre Ableitung oszillieren um den Ursprung herum beliebig schnell. Also je näher man dem x-Wert 0 kommt, desto höher wird die Frequenz. Da im Fall der Funktion f das ganze durch den Faktor [mm] x^2 [/mm] jedoch abgedämpft wird (der Faktor bewirkt, dass die Funktion zwischen den Schranken [mm] x^2 [/mm] und [mm] -x^2 [/mm] oszilliert), ist f dann an der Stelle x=0 stetig (wobei das natürlich keine Begründung ist, sondern nur eine Veranschaulichung).

Klar ist jedoch, dass ein Term der Form [mm] sin\left(\bruch{1}{x}\right) [/mm] bzw. [mm] cos\left(\bruch{1}{x}\right) [/mm] an der Stelle x=0 keinen eindeutigen Wert besitzen kann und daher ist eben die Ableitung f' nicht stetig.


Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de