www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - p-Norm,p-adische Entwicklung
p-Norm,p-adische Entwicklung < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

p-Norm,p-adische Entwicklung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:03 Mi 22.10.2014
Autor: evinda

Hallo!!!

Berechnen Sie die p-Norm und die p-adische Entwicklung von den folgenden Nummern:

6! in [mm] \mathbb{Q}_3, \frac{1}{3!} [/mm] in [mm] \mathbb{Q}_3, [/mm] -3 in [mm] \mathbb{Q}_5 [/mm]

Ich habe folgendes versucht:

[mm] |6!|_3=\frac{1}{3^2} [/mm]

[mm] \left |\frac{1}{3!} \right |_3=3 [/mm]

[mm] |-3|_5=1 [/mm]

Ist es richtig? Wie kann ich die p-adische Entwicklung von diesen Nummern finden?



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
p-Norm,p-adische Entwicklung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:50 Fr 24.10.2014
Autor: felixf

Moin!

> Berechnen Sie die p-Norm und die p-adische Entwicklung von
> den folgenden Nummern:
>  
> 6! in [mm]\mathbb{Q}_3, \frac{1}{3!}[/mm] in [mm]\mathbb{Q}_3,[/mm] -3 in
> [mm]\mathbb{Q}_5[/mm]
>  
> Ich habe folgendes versucht:
>  
> [mm]|6!|_3=\frac{1}{3^2}[/mm]
>  
> [mm]\left |\frac{1}{3!} \right |_3=3[/mm]
>  
> [mm]|-3|_5=1[/mm]
>  
> Ist es richtig?

Ja.

> Wie kann ich die p-adische Entwicklung von
> diesen Nummern finden?

Beachte zuerst, dass $x / [mm] |x|_p$ [/mm] eine Einheit in [mm] $\IZ_p$ [/mm] ist (falls $x$ nicht gerade 0 ist), und Multiplikation/Division mit [mm] $|x|_p$ [/mm] gerade einer Verschiebung in der $p$-adischen Darstellung um [mm] $\log_p |x|_p [/mm] = [mm] -\nu_p(x)$ [/mm] Stellen entspricht.

Jetzt musst du wissen, wie du zu einer Einheit in [mm] $\IZ_p$ [/mm] die $p$-adische Darstellung finden kannst, dann bist du fertig. Falls die Einheit eine ganze Zahl ist (wie beim 1. und 3. Beispiel bei dir), ist das sehr einfach.

Beim zweiten Beispiel musst du das Inverse einer ganzen Zahl berechnen. Dazu gibt's verschiedene Möglichkeiten. Am einfachsten berechnest du das Inverse modulo 3, modulo [mm] $3^2$, [/mm] modulo [mm] $3^3$, [/mm] modulo [mm] $3^4$, [/mm] ..., und schaust ob du allgemein das Inverse modulo [mm] $3^k$ [/mm] angeben kannst. Wenn ja, kannst du daraus die $p$-adische Darstellung der Inversen herleiten.

LG Felix


Bezug
                
Bezug
p-Norm,p-adische Entwicklung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 21:02 Mo 27.10.2014
Autor: evinda

Ich habe es nicht verstanden.. Könntest du mir das analytischer erklären?

Könntest du mir vielleicht ein Beispiel geben?

Bezug
                        
Bezug
p-Norm,p-adische Entwicklung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:55 Di 28.10.2014
Autor: felixf

Moin!

> Ich habe es nicht verstanden..

Was genau hast du nicht verstanden? Und was weisst du überhaupt über $p$-adische Zahlen? Ohne genauer zu wissen was du weisst kann ich nur raten.

> Könntest du mir das
> analytischer erklären?

Was meinst du mit "analytischer"? Mehr im Sinne der Analysis?

> Könntest du mir vielleicht ein Beispiel geben?  

Habt ihr in der Vorlesung kein Beispiel gehabt?

Hast du schonmal Inverse von ganzen Zahlen modulo anderen ganzen Zahlen berechnet? (So in der Algebra oder linearne Algebra z.B.?) Also zu einer Zahl $a$ eine Zahl $b$ bestimmt mit $a [mm] \cdot [/mm] b [mm] \equiv [/mm] 1 [mm] \pmod{n}$? [/mm]

LG Felix


Bezug
                                
Bezug
p-Norm,p-adische Entwicklung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:14 Di 28.10.2014
Autor: justdroppingby

Zur Info, falls du dir die Mühe machen willst - es haben bereits andere versucht:
http://matheplanet.de/matheplanet/nuke/html/viewtopic.php?rd2&topic=199896&start=0#p1466674
http://www.onlinemathe.de/forum/Eigenschaften-beweisen
http://www.matheboard.de/thread.php?threadid=546960

Und evinda gratuliere ich zum vierten Ausrufezeichen, dass du dir scheinbar nach dem Thread hier zugelegt hast:
http://www.onlinemathe.de/forum/Zeigen-dass-es-die-Gleichung-erfuellt


Bezug
                                
Bezug
p-Norm,p-adische Entwicklung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:59 Di 28.10.2014
Autor: evinda

Nein, ich meinte nicht im Sinne der Analysis.

Ich habe nicht verstanden, wie man das macht.

Ich habe, zum Beispiel, folgendes für das zweite versucht:


[mm] 6x_0 \equiv [/mm] 1 [mm] \pmod [/mm] 5 [mm] \Rightarrow x_0 \equiv [/mm] 1 [mm] \pmod5 [/mm]

[mm] 6x_1 \equiv [/mm] 1 [mm] \pmod {5^2} \Rightarrow x_1= [/mm] 21 [mm] \pmod{5^2} [/mm]

[mm] 6x_2 \equiv [/mm] 1 [mm] \pmod {5^3} \Rightarrow x_2=21 \pmod{5^3} [/mm]

Wie könnte ich die Kongruenz [mm] \pmod{5^4} [/mm] lösen und wie könnte ich die Potenzreihe finden?

Bezug
                                        
Bezug
p-Norm,p-adische Entwicklung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Do 30.10.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                        
Bezug
p-Norm,p-adische Entwicklung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Do 30.10.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de