www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - p-Quantil Normalverteilung
p-Quantil Normalverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

p-Quantil Normalverteilung: Tipp gesucht
Status: (Frage) beantwortet Status 
Datum: 23:53 Sa 15.11.2008
Autor: honkmaster

Aufgabe
Ist [mm] $u_p$ [/mm] das $p$-Quantil der Standardnormalverteilung, so ist [mm] $\sigma u_p+\mu$ [/mm] das $p$-Quantil der Normalverteilung mit Parametern [mm] $\mu$ [/mm] und [mm] $\sigma$.\\ [/mm]

Habe keine genaue Idee wie ich hier rangehen soll. Folgende Ansätze habe ich:

Die Dichte der Normalverteilung mit den Parametern [mm] $\mu$ [/mm] und [mm] $\sigma$ [/mm] ist wie folgt definiert:
[mm] f(x)=\frac{1}{\sigma\sqrt{2\pi}}\exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)\right] [/mm]

Ich würde jetzt hierfür das Quantil mittels [mm] p=\int_{-\infty}^{x_p} [/mm] f(x) dx bestimmen wollen. Muss ich hier [mm] p=$\sigma u_p+\mu$ [/mm] setzen aus der aufganstellung und wie bekomme ich den bezug zum quantil der standardnormalverteilung?könnt ihr helfen?

        
Bezug
p-Quantil Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:45 So 16.11.2008
Autor: luis52


> Ich würde jetzt hierfür das Quantil mittels
> [mm]p=\int_{-\infty}^{x_p}[/mm] f(x) dx bestimmen wollen.

Stimmt. Dafuer kannst du auch schreiben [mm] $p=F(x_p)=\Phi((x_p-\mu)/\sigma)=\Phi(u_p)$. [/mm]
Dabei ist F die Verteilungsfunktion der Normalverteilung mit [mm] \mu [/mm] und [mm] \sigma [/mm] ...

vg Luis

Bezug
                
Bezug
p-Quantil Normalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:12 So 16.11.2008
Autor: honkmaster

Wir bestimmen das $p$-Quantil mittels:
[mm] p & =\int_{-\infty}^{x_p}f(x)\text{dx}\\ [/mm]
[mm] & =F(x_p) \\ [/mm]
[mm] & =\Phi\left(\frac{x_p-\mu}{\sigma}\right)\\ [/mm]
[mm] & =\Phi(u_p) [/mm]

das hab ich nun...was bedeutet denn der letzte schritt, habe zwar gefunden das für Quantile [mm] $u_p$ [/mm] für gegebene p die die letzte zeile erfüllen die werte [mm] $\Phi(u_p)=p$ [/mm] und vertafelt sind aber das versteh ich nicht. wo habe ich den nu den "so ist [mm] $\sigma u_p+\mu$ [/mm] das $p$-Quantil der
Normalverteilung mit Parametern [mm] $\mu$ [/mm] und [mm] $\sigma$" [/mm] verwendet...bin planlos is schon spät ;-)...

Bezug
                        
Bezug
p-Quantil Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:29 So 16.11.2008
Autor: luis52

Moin  honkmaster,

es liegen zwei Normalverteilungen vor:

Normalverteilung 1 hat die die Dichte f, die Verteilungsfunktion
[mm] $F(x)=\int_{-\infty}^{x} f(x)\, [/mm] dx$, den Erwartungswert [mm] \mu, [/mm] die
Standardabweichung [mm] \sigma [/mm] und die Prozentpunkte [mm] $x_p$ [/mm] mit [mm] $F(x_p)=p$. [/mm]

Normalverteilung 2 hat die die Dichte [mm] $\varphi(u)=\exp[-2u^2]/\sqrt{2\pi}$, [/mm]
die Verteilungsfunktion [mm] $\Phi(u)=\int_{-\infty}^{u} \phi(x)\, [/mm] dx$, den Erwartungswert 0, die Standardabweichung 1 und die Prozentpunkte [mm] $u_p$ [/mm] mit [mm] $\Phi(u_p)=p$. [/mm]

Zwischen den beiden Verteilungen gibt es verschiedene Zusammenhaenge.
Z.B. gilt

[mm] $f(x)=\frac{1}{\sigma}\varphi\left(\dfrac{x-\mu}{\sigma}\right)$ [/mm] und [mm] $F(x)=\Phi\left(\dfrac{x-\mu}{\sigma}\right)$. [/mm]

Wegen [mm] $F(x_p)=\Phi\left(\dfrac{x_p-\mu}{\sigma}\right)$ [/mm] gibt es auch
den in der Aufgabenstellung genannten Zusammenhang zwischen [mm] $x_p$ [/mm]  und [mm] $u_p$. [/mm]

vg Luis              

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de