www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - parallele Ebene
parallele Ebene < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

parallele Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:10 Di 06.03.2007
Autor: Nipsi

Aufgabe
Geben Sie die Gleichung der Ebene in Koordinatenform an, die prallel zur Ebene E mit der Gleichung -6x + 4y -12z = -10 im Abstand 2 LE verlaufen.

Hallo liebe Leute... wäre lieb wenn mir jemand sagen könnte, wie man das löst, ist mir nämlich n absolutes Rätsel... =(
DANKE

ich habe diese FRage in keinem anderen Forum gestellt.

        
Bezug
parallele Ebene: HESSE'sche Normalform
Status: (Antwort) fertig Status 
Datum: 16:19 Di 06.03.2007
Autor: Roadrunner

Hallo Nipsi!


Bringe Deine Ebenengleichung in die []HESSE'sche Normalform. Und wenn Du dann den $d_$-Wert um $2_$ vergrößerst oder verkleinerst, bist Du schon fertig.


Gruß vom
Roadrunner


Bezug
                
Bezug
parallele Ebene: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:22 Di 06.03.2007
Autor: Nipsi

DANKE!!!!
ich hab das jetzt mal gemahct wie ich mir das denke udn wollte mal fragen ob das so richtig ist bzw ob du das so meintest :

also ich hab aus der korrdinatenform die normalenform gemacht:

( x-( 0 ) * (-6) = 0
     ( 0 )    ( 4)
     (1,2)   (-12)       --> möglich? oder totaler Unsinn?

so dann hab ich gerechnet d= [mm] \wurzel{6^2+ 4^2 +12^2} [/mm]

kam damit auf 196 --> also 14
schreib ich jetzt in meine Gleichung nach hessescher Normalform einfach

( x-( 0 ) )*  1/16 *  (-6  ) = 0
     ( 0 )                   ( 4  )
     (1,2)                  (-12)    

wäre echt nett wenn du mri das auch ncoh verraten könntest =)

Bezug
                        
Bezug
parallele Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 18:13 Di 06.03.2007
Autor: M.Rex

Hallo

Nein, deine Koordinatenform ist ja:

-6x + 4y -12z = -10

Also ist die Normalenform:

[mm] \vektor{-6\\4\\-12}*\vektor{x\\y\\z}=-10 [/mm]

Oder:

-6x + 4y -12z = -10
[mm] \gdw -\bruch{6}{10}x+\bruch{4}{10}y-\bruch{12}{10}z=-1 [/mm]
[mm] \gdw \bruch{3}{5}x-\bruch{2}{5}y+\bruch{6}{5}z=1 [/mm]
Also wäre deine HNF:

[mm] \vektor{\bruch{3}{5}\\-\bruch{2}{5}\\\bruch{6}{5}}*\vektor{x\\y\\z}=1 [/mm]


Alles andere hat Roadrunner dir ja erklärt.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de