www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - parallele affine Unterräume
parallele affine Unterräume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

parallele affine Unterräume: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:15 So 18.06.2006
Autor: Sandy857

Aufgabe
Es seien [mm] A(W_{1}),A(W_{2}) [/mm] zwei schwach parallele affine Unterräume von A(V). Zeigen Sie:
1) Es gilt entweder [mm] A(W_{1})\subset A(W_{2}),A(W_{1})\not=A(_{2}) [/mm] oder [mm] A(W_{1})\cap A(W_{2})=\emptyset. [/mm]
2)Es existiert ein affiner Unterraum [mm] N\subset A(W_{2}),N \not= A(W_{2}) [/mm] mit der Eigenschaft [mm] N\parallel A(W_{1}) [/mm]

Ich habe diese Frage in keinem anderen Forum gestellt.

Also zwei affine Unterräume sind schwach parallel, falls [mm] W_{1} \subset W_{2} [/mm] und [mm] W_{1} \not= W_{2} [/mm] gilt.
zu 1) Ich habe probiert einen Beweis durch Widerspruch zu führen.
         Annahme: [mm] A(W_{1}) \cap A(W_{2}) \not= \emptyset [/mm]
         P [mm] \in A(W_{1}) \cap A(W_{2}) [/mm]
         [mm] \Rightarrow A(W_{1})=P+W_{1} [/mm] und [mm] A(W_{2})= P+W_{2} [/mm]
          Und hier komme ich jetzt nicht weiter.Oder war dieser Ansatz schon völlig falsch.Vielen Dank für eure Mühe und Hilfe.

        
Bezug
parallele affine Unterräume: soll Antwort sein
Status: (Antwort) fertig Status 
Datum: 10:23 Mi 21.06.2006
Autor: just-math

Hey und hallo,

ich wollt eigentlich ne Antwort dazu schreiben, aber geht irgendwie nicht. Na ja, ich schreib mal, was ich mir dazu gedacht habe:

Wenn doch [mm] W_1\subsetneq W_2 [/mm] ist, so ist doch mit [mm] P\in A(W_1)\cap A(W_2) [/mm] und [mm] A(W_i)=P+W_i [/mm] klar, dass dann auch

[mm] A(W_1)=P+W_1\subset P+W_2 [/mm] ist. Und ''='' kann nicht gelten, sonst wäre [mm] W_1=W_2 [/mm] (Beweis dazu schreib ich auch noch hin,
das hilft dann vielleicht noch: sei also [mm] w\in W_2, [/mm] dann ist [mm] P+w\in A(W_2), [/mm] wäre also nach Annahme in [mm] A(W_1), [/mm] also gäb es
[mm] w_1\in W_1 [/mm] mit   [mm] w_1+P=w+P, [/mm] also [mm] w_1=w). [/mm]

Also war dein Ansatz doch richtig, du hättest ihn halt nur zuende hinschreiben müssen.

Viele Grüsse

just-math

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de