www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - parallele vektoren in 3D
parallele vektoren in 3D < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

parallele vektoren in 3D: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:39 Mi 06.02.2008
Autor: toros

hallo,

ich betrachte einen vektor [mm] \vec{R}_1^{(1)}=(1/2,\sqrt{3}/2,0) [/mm] in einer ebene und einen anderen parallelen vektor  [mm] \vec{R}_1^{(2)} [/mm] in einer anderen ebene. die beiden ebenen haben einen abstand c voneinander bzw. werden durch den senkrechten vektor [mm] \vec{a}=(0,0,c) [/mm] verbunden.

kann mir bitte einer sagen, wie die komponenten von [mm] \vec{R}_1^{(2)} [/mm] lauten? [mm] \vec{R}_1^{(2)}=(1/2,\sqrt{3}/2,c) [/mm] ist ja offensichtlich falsch, da [mm] \vec{R}_1^{(1)}+\vec{a}\neq \vec{R}_1^{(2)} [/mm] ist...

danke!
gruss toros

        
Bezug
parallele vektoren in 3D: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 Mi 06.02.2008
Autor: weduwe


> hallo,
>  
> ich betrachte einen vektor
> [mm]\vec{R}_1^{(1)}=(1/2,\sqrt{3}/2,0)[/mm] in einer ebene und einen
> anderen parallelen vektor  [mm]\vec{R}_1^{(2)}[/mm] in einer anderen
> ebene. die beiden ebenen haben einen abstand c voneinander
> bzw. werden durch den senkrechten vektor [mm]\vec{a}=(0,0,c)[/mm]
> verbunden.
>
> kann mir bitte einer sagen, wie die komponenten von
> [mm]\vec{R}_1^{(2)}[/mm] lauten? [mm]\vec{R}_1^{(2)}=(1/2,\sqrt{3}/2,c)[/mm]
> ist ja offensichtlich falsch, da
> [mm]\vec{R}_1^{(1)}+\vec{a}\neq \vec{R}_1^{(2)}[/mm] ist...
>  
> danke!
>  gruss toros

da du einen vektor frei verschieben kannst, hast du

[mm] \vec{R}_1^{(2)}=\vec{R}_1^{(1)} [/mm]


Bezug
                
Bezug
parallele vektoren in 3D: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:19 Do 07.02.2008
Autor: toros

hi,

danke! die vektoren sind gleichlang und zeigen in dieselbe richtung. also gilt: [mm] \vec{R}_1^{(1)}=\vec{R}_1^{(2)}. [/mm]

der vektor [mm] \vec{R}_1^{(1)}+\vec{a} [/mm] verbindet dann das ende des vektors  [mm] \vec{R}_1^{(1)} [/mm] mit der spitzte des vektors [mm] \vec{R}_1^{(2)}, [/mm] richtig? das ist dann quasi eine diagonale... ausserdem gilt dann: [mm] \vec{R}_1^{(1)}-\vec{R}_2^{(2)}=\vec{R}_1^{(1)}-\vec{R}_2^{(1)}, [/mm] oder?

gruss toros

Bezug
                        
Bezug
parallele vektoren in 3D: Antwort
Status: (Antwort) fertig Status 
Datum: 10:32 Do 07.02.2008
Autor: weduwe


> hi,
>  
> danke! die vektoren sind gleichlang und zeigen in dieselbe
> richtung. also gilt: [mm]\vec{R}_1^{(1)}=\vec{R}_1^{(2)}.[/mm]
>  
> der vektor [mm]\vec{R}_1^{(1)}+\vec{a}[/mm] verbindet dann das ende
> des vektors  [mm]\vec{R}_1^{(1)}[/mm] mit der spitzte des vektors
> [mm]\vec{R}_1^{(2)},[/mm] richtig? das ist dann quasi eine
> diagonale... ausserdem gilt dann:
> [mm]\vec{R}_1^{(1)}-\vec{R}_2^{(2)}=\vec{R}_1^{(1)}-\vec{R}_2^{(1)},[/mm]
> oder?
>  
> gruss toros

wenn du ein rechteck hast, ja.
und [mm] \vec{v}-\vec{v}=\vec{o} [/mm]


Bezug
                                
Bezug
parallele vektoren in 3D: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:39 Do 07.02.2008
Autor: toros

hi,

ich hab ein rechteck! das gilt doch immer, egal ob man ein rechteck hat oder nicht, oder?

gruss toros

Bezug
                                        
Bezug
parallele vektoren in 3D: Antwort
Status: (Antwort) fertig Status 
Datum: 12:22 Do 07.02.2008
Autor: weduwe


> hi,
>  
> ich hab ein rechteck! das gilt doch immer, egal ob man ein
> rechteck hat oder nicht, oder?
>
> gruss toros

naja, wie dir Leopold schon geschrieben hat, sind deine formulierungen eher  unpräzise/ unglücklich.

das mit der "diagonale" gilt immer, wie man am einfachsten anhand einer skizze sieht.
ich habe mich beim rechteck auf deinen 1. beitrag bezogen, wo du schreibst, [mm] \vec{a} [/mm] stünde senkrecht .......

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de