www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - parametertransformation
parametertransformation < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

parametertransformation: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:34 Di 23.05.2006
Autor: Janyary

Aufgabe
1.a) Ermitteln Sie die Spuren der Kurven [mm] f:[-\pi,\pi]\to\IR^{2}, f:[-\bruch{\pi}{2},\bruch{\pi}{2}]\to\IR^{2} [/mm] mit
[mm] f(t):=\vektor{cos(t)\\sin(t)}, g(s):=\vektor{cos^{2}(s)-sin^{2}(s)\\2sin(s) cos(s)} [/mm]

b) bemerkung 11.15 laesst zu, dass f und g aequivalente Kurven sind. Wenn dies der Fall ist, gebe man eine [mm] C^{1}-Parametertransformation [/mm] an.

hi leute,

bei der aufgabe bin ich bisschen ratlos.

zu a) gleich zu anfang, was sind denn spuren einer kurve? konnte in meinen aufzeichnungen nichts dazu finden und auch so nichts. ist es vielleicht die laenge der kurve? falls ja, denke ich weiss ich wie ich das berechnen muss.

zu b)
unsere bemerkung 11.15 umfasst einige punkte.
1. aequivalente kurven haben denselben traeger.
was ist damit eigentlich gemeint? ist der traeger das t [mm] \in[-\pi,\pi], [/mm] bzw. [mm] s\in[-\bruch{\pi}{2},\bruch{\pi}{2}] [/mm] der funktion. falls ja, ist das ja bei der aufgabe an sich nicht dasselbe oder?
2.Sei  [mm] \gamma: [a,b]\to[\alpha,\beta] [/mm] eine [mm] C^{1}-Parametertransformation. [/mm] dann gilt wegen [mm] \gamma\circ\gamma^{-1}=id_{[a,b]} [/mm] und der kettenregel:
[mm] \gamma'(\gamma^{-1}(t))*(\gamma^{-1})'=1, t\in[\alpha,\beta] [/mm]  
[mm] \rightarrow \gamma'(\tau) \not=0, (\tau\in[a,b]) [/mm]
hier verstehe ich nicht wirklich, warum die gleichung so aufgestellt wird. das mit der ableitung an sich ist ja klar. aber vielleicht ist das auch einfach nur ne definition..

wir haben auch noch eine definition fuer parametertransformation, aber nirgends mal ein bsp dazu gemacht weshalb ich nicht weiss wie ich da wirklich rangehen muss..
sei [mm] f:[a,b]\to\IR^{n} [/mm] und [mm] g:[\alpha,\beta]\to\IR^{n} [/mm] stetig diffbare kurven. die kurven f,g heissen aequivalent, wenn es eine bijektive abb. [mm] \gamma:[a,b]\to[\alpha,\beta] [/mm] gibt, [mm] (\gamma, \gamma^{-1} [/mm] stetig diffbar), so dass gilt: [mm] g=f\circ \gamma [/mm]
[mm] \gamma [/mm] heisst dann die [mm] C^{1} [/mm] parametertransformation.

also denke ich muesste ich zeigen, dass so eine abbildung [mm] \gamma [/mm] existiert und dass die dann bijektiv ist. leider weiss ich ueberhaupt nicht wie.

ich weiss dass war jetzt sehr viel text. aber es waer echt toll, wenn jemand ein bisschen licht in mein dunkel bringen koennte. oder vielleicht hat ja jemand nen bsp. parat oder nen link wos erklaert ist. ich hab auch schon gesucht aber nix gefunden. hoffe auf eure hilfe.

LG Jany :)

        
Bezug
parametertransformation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mo 29.05.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de