www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - partielle- und Richtungsableit
partielle- und Richtungsableit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partielle- und Richtungsableit: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 09:49 Mi 19.08.2009
Autor: tinky1234

Aufgabe
Sei [mm] f:\IR^2 \to \IR [/mm] definiert durch

f(x,y) = [mm] \bruch{x^2y}{x^4 + y^2} [/mm] für [mm] \vektor{x \\ y} \not= \vektor{0 \\ 0} [/mm] und f(x,y) = 0 für [mm] \vektor{x \\ y} [/mm] = [mm] \vektor{0 \\ 0} [/mm]

(a) In welchen Punkten ^t(a,b) [mm] \in \IR^2 [/mm] ist f partiell diffbar? Berechnen Sie gegebenenfalls die partiellen Ableitungen.

(b) In welchen Punkten ^t(a,b) [mm] \in \IR^2 [/mm] existieren sämtliche Richtungsableitungen in Richtung von v mit [mm] ||v||_2 [/mm] =1? Berechnen Sie gegebenenfalls die Richtungsableitung.

(c) Ist f im Nullpunkt differenzierbar ? ( in Abhängigkeit von b)

Hallo,

vielleicht kann mir ja jemand bei dieser Aufgabe weiterhelfen. Ich habe da nämlich ein paar Unklarheiten.

zu a) Ist das richtig, dass man sagen kann, dass f in allen Punkten ausser [mm] \vektor{x \\ y} [/mm] = [mm] \vektor{0 \\ 0} [/mm] partiell differenzierbar ist, da f dort differenzierbar ist, da f dort eine rationale Funktion ist, die ja auf ihrem Definitionsbereich differenzierbar ist?!

Und muss ich die partielle Differenzierbarkeit dann nur noch für den Nullpunkt prüfen? Und wenn ja, wie muss ich das machen?
Muss ich ausdrücklich zeigen, dass f im Nullpunkt nach jeder Koordinate partiell differenzierbar ist? Oder gibt es eine einfachere Begründung?


zu b) Kann man auch hier sagen, dass in allen Punkten ausser dem Nullpunkt sämtliche Richtungsableitungen existieren, da f in diesen Punkten ja auch differenzierbar ist? Und muss ich dann nur noch für den Nullpunkt überprüfen, ob dort sämtliche Richtungsableitungen existieren?

Wie muss ich zeigen, dass im Nullpunkt sämtliche Richtungsableitungen existieren?

zuc) Hier weiß ich garnicht was ich genau zeigen soll?! Kann mir jemand dabei helfen?


Vielen dank schon mal
tinky

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
partielle- und Richtungsableit: Antwort
Status: (Antwort) fertig Status 
Datum: 13:29 Mi 19.08.2009
Autor: awakening

Die Fkt. ist nicht stetig.

Zeige das mithilfe des Folgenkriteriums.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de