www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - partielle Ableitungen
partielle Ableitungen < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partielle Ableitungen: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:43 Mo 23.06.2008
Autor: patsch

Aufgabe
Zeigen Sie, dass die Wärmeleitungsgleichung mit k>0 für eine Ortsveränderliche x
         [mm] \Delta u-\bruch{1}{k}u_{t} [/mm] = [mm] u_{xx}-\bruch{1}{k}u_{t} [/mm] = 0
durch die Funktion
         u(t,x) = [mm] e^{-t} sin(\bruch{x}{\wurzel[2]{k}}) [/mm]
gelöst wird.

Ist mein Ansatz richtig, in dem ich zuerst die partiellen Ablleitungen erster Ordnung berechne. Wie muss ich dann weiter verfahren?

mfg patsch

        
Bezug
partielle Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:48 Mo 23.06.2008
Autor: fred97

Du brauchst :
die partielle Ableitung von u nach t, dann mußt du noch u zweimal mal nach x differenzieren.

Weise nun nach, dass u die DGL erfüllt

FRED

Bezug
                
Bezug
partielle Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:21 Mo 23.06.2008
Autor: patsch

Gelten dann diese Ableitungen:
          [mm] \bruch{df}{dt} [/mm] = [mm] -e^{-t}sin(\bruch{x}{\wurzel{k}}) [/mm]
        
          [mm] \bruch{df}{dx} [/mm] = [mm] e^{-t}cos(\bruch{x}{\wurzel{k}}) [/mm]
          
          [mm] \bruch{d^{2}f}{dx^{2}}= -e^{-t}sin(\bruch{x}{\wurzel{k}}) [/mm]

Wie weise ich anschließend nach das u die DGL erfüllt?

mfg patsch

Bezug
                        
Bezug
partielle Ableitungen: Berichtigung
Status: (Antwort) fertig Status 
Datum: 17:27 Mo 23.06.2008
Autor: benevonmattheis

Hallo,

du hast dich bei deinen partiellen Ableitungen nach x verrechnet, ich sage nur Kettenregel und innere Ableitung.

Um nachzuweisen, dass die gegebene Funktion die DGL erfüllt, musst du nur ihre Ableitungen in die DGL einsetzen. Wenn dann auf beiden Seiten dass gleiche steht wir die Funktion die DGL lösen.

lg,
benevonmattheis

Bezug
                                
Bezug
partielle Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:51 Mo 23.06.2008
Autor: patsch

Vielen Dank für die Antwort. Dann sehen die Ableitungen wie folgt aus:            
          [mm] \bruch{df}{dt} [/mm] = [mm] -e^{-t}sin(\bruch{x}{\wurzel{k}}) [/mm]
        
          [mm] \bruch{df}{dx} [/mm] = [mm] e^{-t}cos(\bruch{x}{\wurzel{k}})\bruch{1} {\wurzel{k}} [/mm]
          
          [mm] \bruch{d^{2}f}{dx^{2}}= -e^{-t}sin(\bruch{x}{\wurzel{k}})\bruch{1}{k} [/mm]

Muss ich dann für [mm] u_{xx}=\bruch{d^{2}f}{dx^{2}} [/mm] und [mm] u_{t}=\bruch{df}{dt} [/mm] einsetzen?

mfg patsch

Bezug
                                        
Bezug
partielle Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:09 Mo 23.06.2008
Autor: Merle23


> Muss ich dann für [mm]u_{xx}=\bruch{d^{2}f}{dx^{2}}[/mm] und
> [mm]u_{t}=\bruch{df}{dt}[/mm] einsetzen?

Ja.

Bezug
                                        
Bezug
partielle Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:12 Mo 23.06.2008
Autor: XPatrickX


> Vielen Dank für die Antwort. Dann sehen die Ableitungen wie
> folgt aus:            
> [mm]\bruch{df}{dt}[/mm] = [mm]-e^{-t}sin(\bruch{x}{\wurzel{k}})[/mm]
>
> [mm]\bruch{df}{dx}[/mm] = [mm]e^{-t}cos(\bruch{x}{\wurzel{k}})\bruch{1} {\wurzel{k}}[/mm]
>  
>            
> [mm]\bruch{d^{2}f}{dx^{2}}= -e^{-t}sin(\bruch{x}{\wurzel{k}})\bruch{1}{k}[/mm]
>  

[daumenhoch]

Grüße Patrick

Bezug
                                                
Bezug
partielle Ableitungen: Aufgabe 2
Status: (Frage) überfällig Status 
Datum: 07:38 Di 24.06.2008
Autor: patsch

Aufgabe
Zeigen Sie, dass die Wellengleichung
        [mm] \Delta u-\bruch{1}{c^{2}}u_{tt} [/mm] = [mm] u_{xx}+u_{yy}+u_{zz}-\bruch{1}{c^{2}}u_{tt} [/mm] = 0
durch die Funktion
          u(r,t) = [mm] \bruch{1}{r}sin(r-ct) [/mm]
für r > 0;  [mm] r^{2} [/mm] = [mm] x^{2}+y^{2}+z^{2} [/mm] gelöst wird.

Ich habe bereits probiert für r = [mm] \wurzel{x^{2}+y^{2}+z^{2}} [/mm] einzusetzten und diese Funktion u(x,y,z,t) dann jeweils zweimal nach x, y, z und t abzuleiten. Gibt es einen einfachern Weg, da die Ableitungen ziemlich lang werden? Könnte ich z.B. auch erst nach r zweimal ableiten und dann erst für                     r = [mm] \wurzel{x^{2}+y^{2}+z^{2}} [/mm]  einsetzten?

mfg patsch

Bezug
                                                        
Bezug
partielle Ableitungen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:20 Do 26.06.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de