www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - partielle Differentiation
partielle Differentiation < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partielle Differentiation: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:30 Di 24.05.2005
Autor: Skydiver

Hallo.

Stehe vor folgender Aufgabe und habe nicht die geringste Ahnung was ich dabei machen soll:

Stellen sie den Operator  d/dx (partiell) durch Ableitung nach Kugelkoordinaten dar: x = r [mm] sin(\theta) cos(\phi), [/mm] y = r [mm] sin(\theta) sin(\phi), [/mm] z = r [mm] cos(\theta) [/mm]

Falls irgendwer weiß was damit gemeint ist, bitte ich um Hilfe.

mfg.

        
Bezug
partielle Differentiation: Versuch
Status: (Antwort) fertig Status 
Datum: 20:17 Di 24.05.2005
Autor: MathePower

Hallo Skydiver,

> Stellen sie den Operator  d/dx (partiell) durch Ableitung
> nach Kugelkoordinaten dar: x = r [mm]sin(\theta) cos(\phi),[/mm] y =
> r [mm]sin(\theta) sin(\phi),[/mm] z = r [mm]cos(\theta)[/mm]

ich nehme mal, daß die partiellen Ableitungen [mm]\frac{{\delta f}}{{\delta x}}[/mm], [mm]\frac{{\delta f}}{{\delta y}}[/mm] und [mm]\frac{{\delta f}}{{\delta z}}[/mm] durch die partiellen Ableitungen[mm]{\frac{{\delta f}}{{\delta r}}}[/mm],  [mm]\[ {\frac{{\delta f}}{{\delta \theta }}}[/mm] und [mm]{\frac{{\delta f}}{{\delta \phi }}}[/mm] ausgedrückt werden sollen.

Es handelt sich dann um die Funktion [mm]f\left( {r,\;\theta ,\;\phi } \right)\; = \;f\left( {x\left( {r,\;\theta ,\;\phi } \right),\;y\left( {r,\;\theta ,\;\phi } \right),\;z\left( {r,\;\theta ,\;\phi } \right)} \right)[/mm] welche dann partiell nach den Variablen [mm]{r,\;\theta ,\;\phi }[/mm] abgeleitet werden muß. Daraus erhältst Du dann 3 Gleichungen in 3 Unbekannten.

[mm]\begin{array}{l} \frac{{\delta f}}{{\delta r}}\; = \;\frac{{\delta f}}{{\delta x}}\;\frac{{\delta x}}{{\delta r}}\; + \;\frac{{\delta f}}{{\delta y}}\;\frac{{\delta y}}{{\delta r}}\; + \;\frac{{\delta f}}{{\delta z}}\;\frac{{\delta z}}{{\delta r}} \\ \frac{{\delta f}}{{\delta \theta }}\; = \;\frac{{\delta f}}{{\delta x}}\;\frac{{\delta x}}{{\delta \theta }}\; + \;\frac{{\delta f}}{{\delta y}}\;\frac{{\delta y}}{{\delta \theta }}\; + \;\frac{{\delta f}}{{\delta z}}\;\frac{{\delta z}}{{\delta \theta }} \\ \frac{{\delta f}}{{\delta \phi }}\; = \;\frac{{\delta f}}{{\delta x}}\;\frac{{\delta x}}{{\delta \phi }}\; + \;\frac{{\delta f}}{{\delta y}}\;\frac{{\delta y}}{{\delta \phi }}\; + \;\frac{{\delta f}}{{\delta z}}\;\frac{{\delta z}}{{\delta \phi }} \\ \end{array}[/mm]

Dieses Gleichungssystem ist dann nach  [mm]\frac{{\delta f}}{{\delta x}}[/mm], [mm]\frac{{\delta f}}{{\delta y}}[/mm] und [mm] \frac{{\delta f}}{{\delta z}}[/mm] aufzulösen.

Gruß
MathePower






Bezug
                
Bezug
partielle Differentiation: Frage
Status: (Frage) beantwortet Status 
Datum: 08:49 Mi 25.05.2005
Autor: Skydiver

Hallo.

Vielen Dank für die Antwort, ich hab das kurz mal mit Mathematica nach gerechnet und komme auf die richtige Löung.
Meine Frage ist jetzt nur noch,  ob es vielleicht eine einfachere Möglichkeit gibt, denn das alles händisch zu rechnen ist ziemlich aufwendig. Und vor allem brauche ich ja nur df/dx und nicht alle anderen auch.

mfg
Stefan Schwarz.

Bezug
                        
Bezug
partielle Differentiation: Antwort
Status: (Antwort) fertig Status 
Datum: 12:23 Mi 25.05.2005
Autor: Julius

Hallo Skydiver!

>  Meine Frage ist jetzt nur noch,  ob es vielleicht eine
> einfachere Möglichkeit gibt, denn das alles händisch zu
> rechnen ist ziemlich aufwendig. Und vor allem brauche ich
> ja nur df/dx und nicht alle anderen auch.

Ja, sicher geht das einfacher! Bilde doch einfach das totale Differential!

$dx = [mm] \sin(\theta)\cos(\phi)dr [/mm] + r [mm] \cos(\theta)\cos(\phi)d\theta- [/mm]  r [mm] \sin(\theta)\sin(\phi)d\phi$. [/mm]

Edit: Ach so, kann sein, dass das gar nicht gemeint war, sehe ich gerade... Hmmh, ich lasse es mal offen...

Viele Grüße
Julius


Bezug
                        
Bezug
partielle Differentiation: Andere Möglichkeit
Status: (Antwort) fertig Status 
Datum: 18:19 Mi 25.05.2005
Autor: MathePower

Hallo Skydiver,

> Vielen Dank für die Antwort, ich hab das kurz mal mit
> Mathematica nach gerechnet und komme auf die richtige
> Löung.
>  Meine Frage ist jetzt nur noch,  ob es vielleicht eine
> einfachere Möglichkeit gibt, denn das alles händisch zu
> rechnen ist ziemlich aufwendig. Und vor allem brauche ich
> ja nur df/dx und nicht alle anderen auch.

klar gibt es die.

[mm]\begin{array}{l} f\left( {x,\;y,\;z} \right)\; = \;f\left( {r\left( {x,\;y,\;z} \right),\;\phi \left( {x,\;y,\;z} \right),\;\theta \left( {x,\;y,\;z} \right)} \right) \\ \frac{{\delta f}}{{\delta x}}\; = \;\frac{{\delta f}}{{\delta r}}\;\frac{{\delta r}}{{\delta x}}\; + \;\frac{{\delta f}}{{\delta \phi }}\;\frac{{\delta \phi }}{{\delta x}}\; + \;\frac{{\delta f}}{{\delta \theta }}\;\frac{{\delta \theta }}{{\delta x}} \\ \end{array}[/mm]

Um die partiellen Ableitungen [mm]\frac{{\delta r}}{{\delta x}}[/mm],  [mm]\frac{{\delta \phi }}{{\delta x}}[/mm] und [mm]\frac{{\delta \theta }}{{\delta x}}[/mm] ausrechnen zu können, brauchst Du die Funktionen [mm]{r\left( {x,\;y,\;z} \right)}[/mm], [mm]{\phi\left( {x,\;y,\;z} \right)}[/mm] und [mm]{\theta\left( {x,\;y,\;z} \right)}[/mm], welche leicht zu ermitteln sind.

Gruß
MathePower






Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de