www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - partielle Integration
partielle Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

partielle Integration: Problem
Status: (Frage) beantwortet Status 
Datum: 13:36 Di 19.07.2005
Autor: mathePaul

Hallo,

ich möchte folgendes unbestimmtes Integral berechnen:

[mm] \integral_{}^{} [/mm] { [mm] e^{ax} [/mm] * cos(bx) dx}

Laut Aufgabenstellung soll das mit partieller Integration oder durch Substitution möglich sein. Ich weiß aber nicht richtig wie das gehen soll.
Bei partieller Integration geht es ja eigentlich darum einen Faktor in dem Integral durch Ableitung wegzubekommen. Dies ist aber hier nicht möglich weil (e hoch x) auch nach Ableitung noch (e hoch x) ist und aus dem cos wird nach Ableitung ein sin und aus dem sin ein cos usw.
Für die Substitution fällt mir auch nichts ein.

Wäre schön, wenn mir jemand weiterhelfen könnte.

Danke, Paul.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
partielle Integration: ZWEI-mal part. Integration
Status: (Antwort) fertig Status 
Datum: 13:47 Di 19.07.2005
Autor: Roadrunner

Hallo mathePaul,

[willkommenmr] !!


Bei dieser Funktion mußt Du das Verfahren der partiellen Integration zwei-mal hintereinander anwenden.


Am besten dieses Integral als Gesamtintegral in eine Zeile schreiben.

Dann hast Du nämlich sowohl auf der rechten Seite alsu auf auf der linken Seite der Gleichung den gesuchten Ausdruck [mm] $\integral{e^{a*x}*\cos(bx) \ dx}$ [/mm] (evtl. mit einem Faktor/Koeffizient) stehen.

Dann kannst Du diese Gleichung umstellen nach [mm] $\integral{e^{a*x}*\cos(bx) \ dx}$ [/mm] .



Kontrollergebnis (bitte nachrechnen):

[mm] $\integral{e^{a*x}*\cos(bx) \ dx} [/mm] \ = \ [mm] \bruch{e^{a*x}}{a^2+b^2}*\left[a*\cos(bx) + b*\sin(bx)\right] [/mm] \ + \ C$


Gruß vom
Roadrunner


Bezug
                
Bezug
partielle Integration: Danke!!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:46 Di 19.07.2005
Autor: mathePaul

Hallo Roadrunner,

vielen Dank für deine Antwort, ich habs hinbekommen, komme auf das gleiche Ergebnis wie du.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de