www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - periodische Fkt, Ergodensatz
periodische Fkt, Ergodensatz < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

periodische Fkt, Ergodensatz: Frage zu Beispiel
Status: (Frage) beantwortet Status 
Datum: 17:32 So 15.12.2013
Autor: Tipsi

Hallo, liebe MathematikerInnen!

Gerade haben wir die Ergodensätze gemacht und dazu folgendes Beispiel bekommen:

Für eine auf [mm] \mathbb{R} [/mm] periodische Funktion f mit [mm] f(\omega+1) [/mm] = [mm] f(\omega) [/mm] für alle [mm] \omega \in \mathbb{R}, [/mm] die zudem auf ([0,1], [mm] \mathcal{B}\cap [/mm] [0,1], [mm] \lambda) [/mm] integrierbar ist, berechne man [mm] lim_n \frac{1}{n} \sum_{i=0}^{n-1}f(3^i \omega). [/mm]

Habt ihr eine Idee, wie man das angehen könnte? Kann man sagen, dass die [mm] f(\omega) [/mm] shift-invariant sind oder wie würde es korrekt lauten?

Vielen Dank im Voraus!

        
Bezug
periodische Fkt, Ergodensatz: Antwort
Status: (Antwort) fertig Status 
Datum: 10:18 Mo 16.12.2013
Autor: Gonozal_IX

Hiho,

> Habt ihr eine Idee, wie man das angehen könnte? Kann man sagen, dass die [mm]f(\omega)[/mm] shift-invariant sind oder wie würde es korrekt lauten?

sagen kannst du das sicherlich, nur ist absolut nicht klar, wo du es nun verwenden willst.
Benötigen wirst du es allemal.

Du hast ja selbst schon gesagt, dass der Ergodensatz eine Idee wäre.
Wende ihn doch mal an, was benötigst du dafür?

Auch hier gilt: Voraussetzungen und Ideen hinschreiben ist schonmal die halbe Miete.

Gruß,
Gono.

Bezug
                
Bezug
periodische Fkt, Ergodensatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:31 Mo 16.12.2013
Autor: Tipsi

Hallo Gono, danke für deine Antwort!

Ich vermute, folgender Satz würde sich anbieten:
Ist [mm] (X_n)_{n \in \mathbb{N}_0} [/mm] ein stationärer Prozess auf einem Wahrscheinlichkeitsraum [mm] (\Omega, \sigma, [/mm] P) mit integrierbarem [mm] X_0 [/mm] und der Prozess ergodisch, so gilt [mm] lim_k \frac{1}{k} \sum_{i=0}^{k-1} X_i [/mm] = [mm] \mathbb{E}X_0 [/mm] P-fs.

In dem Beispiel liegt zwar kein Wahrscheinlichkeitsraum vor, aber wir arbeiten auch nur auf [0,1], also würde ich für [mm] P=\lambda [/mm] setzen.

Damit die Voraussetzungen für den Satz erfüllt sind, müssen wir folgende Punkte zeigen:
1.) stationärer Prozess: Es muss gelten: [mm] T^0(\omega)=id(\omega)=\omega [/mm] und [mm] X_n(\omega)=X(T^n(\omega)). [/mm]
Bei uns ist [mm] 3^0(\omega)=\omega [/mm] und [mm] f_n(\omega):=f(3^n(\omega)) [/mm]
T muss eine maßtreue Transformation sein. Ist das für [mm] T(\omega):=3\omega [/mm] erfüllt? (Ich vermute schon, denn [mm] \lambda(\omega)=\lambda(3 \omega) [/mm] = 0?)

2.) Die X müssen integrierbar sein. Das ist für f laut Angabe erfüllt.

3.) Der Prozess muss ergodisch sein. Ein stationärer stochastischer Prozess [mm] (X_n)_{n \in \mathbb{N}_0} [/mm] auf einem Wahrscheinlichkeitsraum [mm] (\Omega, \sigma, [/mm] P) ist ergodisch, wenn der Verschiebeoperator shift ergodisch auf [mm] (\mathbb{R}^{\mathbb{N}_0}, \mathcal{B}_{\mathbb{N}_0}, PX^{-1}) [/mm] ist, was auch erfüllt ist, wenn für jede invariante Menge A [mm] \in \sigma [/mm] gilt P(A)=0 oder P(A) = 1.
Die Menge A heißt invariant, wenn es ein shift-invariantes B [mm] \in \mathcal{B}_{\mathbb{N}_0} [/mm] gibt mit [mm] A=X^{-1}(B). [/mm]
Wie kann ich denn zeigen, dass die [mm] f(\omega) [/mm] shift-invariant sind und wie kann ich damit dann zeigen, dass der Punkt erfüllt ist?

Das Ergebnis, [mm] \mathbb{E}(X_0) [/mm] ist dann [mm] \integral_0^1 f(\omega)d\lambda? [/mm]

LG

Bezug
                        
Bezug
periodische Fkt, Ergodensatz: Antwort
Status: (Antwort) fertig Status 
Datum: 14:04 Mo 16.12.2013
Autor: fred97


> Hallo Gono, danke für deine Antwort!
>  
> Ich vermute, folgender Satz würde sich anbieten:
>  Ist [mm](X_n)_{n \in \mathbb{N}_0}[/mm] ein stationärer Prozess
> auf einem Wahrscheinlichkeitsraum [mm](\Omega, \sigma,[/mm] P) mit
> integrierbarem [mm]X_0[/mm] und der Prozess ergodisch, so gilt [mm]lim_k \frac{1}{k} \sum_{i=0}^{k-1} X_i[/mm]
> = [mm]\mathbb{E}X_0[/mm] P-fs.
>  
> In dem Beispiel liegt zwar kein Wahrscheinlichkeitsraum
> vor, aber wir arbeiten auch nur auf [0,1], also würde ich
> für [mm]P=\lambda[/mm] setzen.
>  
> Damit die Voraussetzungen für den Satz erfüllt sind,
> müssen wir folgende Punkte zeigen:
>  1.) stationärer Prozess: Es muss gelten:
> [mm]T^0(\omega)=id(\omega)=\omega[/mm] und
> [mm]X_n(\omega)=X(T^n(\omega)).[/mm]
>  Bei uns ist [mm]3^0(\omega)=\omega[/mm] und
> [mm]f_n(\omega):=f(3^n(\omega))[/mm]
>  T muss eine maßtreue Transformation sein. Ist das für
> [mm]T(\omega):=3\omega[/mm] erfüllt? (Ich vermute schon, denn
> [mm]\lambda(\omega)=\lambda(3 \omega)[/mm] = 0?)

Nein. Das ist nicht der Fall !

Maßtreu bedeutet: [mm] \lambda(T^{-1}(A))= \lambda(A) [/mm] für alle A [mm] \in \sigma. [/mm]

FRED

>  
> 2.) Die X müssen integrierbar sein. Das ist für f laut
> Angabe erfüllt.
>  
> 3.) Der Prozess muss ergodisch sein. Ein stationärer
> stochastischer Prozess [mm](X_n)_{n \in \mathbb{N}_0}[/mm] auf einem
> Wahrscheinlichkeitsraum [mm](\Omega, \sigma,[/mm] P) ist ergodisch,
> wenn der Verschiebeoperator shift ergodisch auf
> [mm](\mathbb{R}^{\mathbb{N}_0}, \mathcal{B}_{\mathbb{N}_0}, PX^{-1})[/mm]
> ist, was auch erfüllt ist, wenn für jede invariante Menge
> A [mm]\in \sigma[/mm] gilt P(A)=0 oder P(A) = 1.
>  Die Menge A heißt invariant, wenn es ein
> shift-invariantes B [mm]\in \mathcal{B}_{\mathbb{N}_0}[/mm] gibt mit
> [mm]A=X^{-1}(B).[/mm]
> Wie kann ich denn zeigen, dass die [mm]f(\omega)[/mm]
> shift-invariant sind und wie kann ich damit dann zeigen,
> dass der Punkt erfüllt ist?
>  
> Das Ergebnis, [mm]\mathbb{E}(X_0)[/mm] ist dann [mm]\integral_0^1 f(\omega)d\lambda?[/mm]
>
> LG


Bezug
                                
Bezug
periodische Fkt, Ergodensatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:40 Mo 16.12.2013
Autor: Tipsi


> > Hallo Gono, danke für deine Antwort!
>  >  
> > Ich vermute, folgender Satz würde sich anbieten:
>  >  Ist [mm](X_n)_{n \in \mathbb{N}_0}[/mm] ein stationärer Prozess
> > auf einem Wahrscheinlichkeitsraum [mm](\Omega, \sigma,[/mm] P) mit
> > integrierbarem [mm]X_0[/mm] und der Prozess ergodisch, so gilt [mm]lim_k \frac{1}{k} \sum_{i=0}^{k-1} X_i[/mm]
> > = [mm]\mathbb{E}X_0[/mm] P-fs.
>  >  
> > In dem Beispiel liegt zwar kein Wahrscheinlichkeitsraum
> > vor, aber wir arbeiten auch nur auf [0,1], also würde ich
> > für [mm]P=\lambda[/mm] setzen.
>  >  
> > Damit die Voraussetzungen für den Satz erfüllt sind,
> > müssen wir folgende Punkte zeigen:
>  >  1.) stationärer Prozess: Es muss gelten:
> > [mm]T^0(\omega)=id(\omega)=\omega[/mm] und
> > [mm]X_n(\omega)=X(T^n(\omega)).[/mm]
>  >  Bei uns ist [mm]3^0(\omega)=\omega[/mm] und
> > [mm]f_n(\omega):=f(3^n(\omega))[/mm]
>  >  T muss eine maßtreue Transformation sein. Ist das für
> > [mm]T(\omega):=3\omega[/mm] erfüllt? (Ich vermute schon, denn
> > [mm]\lambda(\omega)=\lambda(3 \omega)[/mm] = 0?)
>  
> Nein. Das ist nicht der Fall !

Ist obige Zeile also falsch?

>  
> Maßtreu bedeutet: [mm]\lambda(T^{-1}(A))= \lambda(A)[/mm] für alle
> A [mm]\in \sigma.[/mm]

Haben wir also keine maßtreue Transformation? Aber dann ist doch der Ergodensatz nicht anwendbar???

>  
>  >  
> > 2.) Die X müssen integrierbar sein. Das ist für f laut
> > Angabe erfüllt.
>  >  
> > 3.) Der Prozess muss ergodisch sein. Ein stationärer
> > stochastischer Prozess [mm](X_n)_{n \in \mathbb{N}_0}[/mm] auf einem
> > Wahrscheinlichkeitsraum [mm](\Omega, \sigma,[/mm] P) ist ergodisch,
> > wenn der Verschiebeoperator shift ergodisch auf
> > [mm](\mathbb{R}^{\mathbb{N}_0}, \mathcal{B}_{\mathbb{N}_0}, PX^{-1})[/mm]
> > ist, was auch erfüllt ist, wenn für jede invariante Menge
> > A [mm]\in \sigma[/mm] gilt P(A)=0 oder P(A) = 1.
>  >  Die Menge A heißt invariant, wenn es ein
> > shift-invariantes B [mm]\in \mathcal{B}_{\mathbb{N}_0}[/mm] gibt mit
> > [mm]A=X^{-1}(B).[/mm]
> > Wie kann ich denn zeigen, dass die [mm]f(\omega)[/mm]
> > shift-invariant sind und wie kann ich damit dann zeigen,
> > dass der Punkt erfüllt ist?
>  >  
> > Das Ergebnis, [mm]\mathbb{E}(X_0)[/mm] ist dann [mm]\integral_0^1 f(\omega)d\lambda?[/mm]
> >
> > LG
>  


Bezug
                                        
Bezug
periodische Fkt, Ergodensatz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:41 Mo 16.12.2013
Autor: fred97


> > > Hallo Gono, danke für deine Antwort!
>  >  >  
> > > Ich vermute, folgender Satz würde sich anbieten:
>  >  >  Ist [mm](X_n)_{n \in \mathbb{N}_0}[/mm] ein stationärer
> Prozess
> > > auf einem Wahrscheinlichkeitsraum [mm](\Omega, \sigma,[/mm] P) mit
> > > integrierbarem [mm]X_0[/mm] und der Prozess ergodisch, so gilt [mm]lim_k \frac{1}{k} \sum_{i=0}^{k-1} X_i[/mm]
> > > = [mm]\mathbb{E}X_0[/mm] P-fs.
>  >  >  
> > > In dem Beispiel liegt zwar kein Wahrscheinlichkeitsraum
> > > vor, aber wir arbeiten auch nur auf [0,1], also würde ich
> > > für [mm]P=\lambda[/mm] setzen.
>  >  >  
> > > Damit die Voraussetzungen für den Satz erfüllt sind,
> > > müssen wir folgende Punkte zeigen:
>  >  >  1.) stationärer Prozess: Es muss gelten:
> > > [mm]T^0(\omega)=id(\omega)=\omega[/mm] und
> > > [mm]X_n(\omega)=X(T^n(\omega)).[/mm]
>  >  >  Bei uns ist [mm]3^0(\omega)=\omega[/mm] und
> > > [mm]f_n(\omega):=f(3^n(\omega))[/mm]
>  >  >  T muss eine maßtreue Transformation sein. Ist das
> für
> > > [mm]T(\omega):=3\omega[/mm] erfüllt? (Ich vermute schon, denn
> > > [mm]\lambda(\omega)=\lambda(3 \omega)[/mm] = 0?)
>  >  
> > Nein. Das ist nicht der Fall !
>  Ist obige Zeile also falsch?
>  >  
> > Maßtreu bedeutet: [mm]\lambda(T^{-1}(A))= \lambda(A)[/mm] für alle
> > A [mm]\in \sigma.[/mm]
>  Haben wir also keine maßtreue
> Transformation? Aber dann ist doch der Ergodensatz nicht
> anwendbar???

Es gibt nicht nur einen Ergodensatz. Welche hattet Ihr denn ?

FRED

>  >  
> >  >  

> > > 2.) Die X müssen integrierbar sein. Das ist für f laut
> > > Angabe erfüllt.
>  >  >  
> > > 3.) Der Prozess muss ergodisch sein. Ein stationärer
> > > stochastischer Prozess [mm](X_n)_{n \in \mathbb{N}_0}[/mm] auf einem
> > > Wahrscheinlichkeitsraum [mm](\Omega, \sigma,[/mm] P) ist ergodisch,
> > > wenn der Verschiebeoperator shift ergodisch auf
> > > [mm](\mathbb{R}^{\mathbb{N}_0}, \mathcal{B}_{\mathbb{N}_0}, PX^{-1})[/mm]
> > > ist, was auch erfüllt ist, wenn für jede invariante Menge
> > > A [mm]\in \sigma[/mm] gilt P(A)=0 oder P(A) = 1.
>  >  >  Die Menge A heißt invariant, wenn es ein
> > > shift-invariantes B [mm]\in \mathcal{B}_{\mathbb{N}_0}[/mm] gibt mit
> > > [mm]A=X^{-1}(B).[/mm]
> > > Wie kann ich denn zeigen, dass die [mm]f(\omega)[/mm]
> > > shift-invariant sind und wie kann ich damit dann zeigen,
> > > dass der Punkt erfüllt ist?
>  >  >  
> > > Das Ergebnis, [mm]\mathbb{E}(X_0)[/mm] ist dann [mm]\integral_0^1 f(\omega)d\lambda?[/mm]
> > >
> > > LG
> >  

>  


Bezug
                                                
Bezug
periodische Fkt, Ergodensatz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:44 Mo 16.12.2013
Autor: Tipsi


> Es gibt nicht nur einen Ergodensatz. Welche hattet Ihr denn
> ?
>  
> FRED

Hallo, wir hatten den Maximalen Ergodensatz, den Ergodensatz von Birkhoff, den Mittel-Ergodensatz und den, den ich schon geschrieben habe.
Kann denn eine Transformation ergodisch sein, obwohl sie nicht maßtreu ist?
Was von dem, das ich vorher geschrieben habe, war denn richtig?

Bezug
                                                        
Bezug
periodische Fkt, Ergodensatz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mi 18.12.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de