periodische Lösungen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 07:46 Fr 10.02.2012 | Autor: | Harris |
Hi!
Ich habe [mm] $f:\IR\rightarrow\IR$ [/mm] stetig diffbar, $f(0)=0$ und $f(x)x>0$ für [mm] $x\neq [/mm] 0$. Nun soll ich zeigen, dass
$x''+f(x')+x=0$ keine periodische Lösung außer die 0 besitzt.
Im Hinweis ist noch angegeben, dass ich mit $x'$ multiplizieren soll.
Mein Ansatz: Indirekter Beweis, es gibt also eine periodische Lösung [mm] $x(t)=x(t+\alpha)$ [/mm] mit [mm] $\alpha>0$. [/mm]
Die Nullfunktion ist offensichtlich eine Lösung der DGL. Wegen stetiger Diffbarkeit von $f$ herrscht Lipschitz-stetigkeit und somit darf keine andere Lösung an irgendeiner Stelle Null annehmen.
Wegen der Periodizität und dem Mittelwertsatz gibt es ein [mm] $b\in\IR$ [/mm] mit $x'(b)=0$.
Multiplikation mit $x'$ liefert $x'x''+f(x')x'+xx'=0$
[mm] $\Rightarrow x'x''+xx'=((x')^2)'+(x^2)'>0$
[/mm]
Und wie geht's weiter? Ist der Ansatz überhaupt brauchbar? Wegen der Ungleichung kann ich ja jetzt nicht einfach die Ableitungen links wegstreichen...
Grüße, Harris
|
|
|
|
> Hi!
>
> Ich habe [mm]f:\IR\rightarrow\IR[/mm] stetig diffbar, [mm]f(0)=0[/mm] und
> [mm]f(x)x>0[/mm] für [mm]x\neq 0[/mm]. Nun soll ich zeigen, dass
> [mm]x''+f(x')+x=0[/mm] keine periodische Lösung außer die 0
> besitzt.
>
> Im Hinweis ist noch angegeben, dass ich mit [mm]x'[/mm]
> multiplizieren soll.
>
> Mein Ansatz: Indirekter Beweis, es gibt also eine
> periodische Lösung [mm]x(t)=x(t+\alpha)[/mm] mit [mm]\alpha>0[/mm].
> Die Nullfunktion ist offensichtlich eine Lösung der DGL.
> Wegen stetiger Diffbarkeit von [mm]f[/mm] herrscht
> Lipschitz-stetigkeit und somit darf keine andere Lösung an
> irgendeiner Stelle Null annehmen.
> Wegen der Periodizität und dem Mittelwertsatz gibt es ein
> [mm]b\in\IR[/mm] mit [mm]x'(b)=0[/mm].
>
> Multiplikation mit [mm]x'[/mm] liefert [mm]x'x''+f(x')x'+xx'=0[/mm]
> [mm]\Rightarrow x'x''+xx'=((x')^2)'+(x^2)'>0[/mm]
stimmt nicht ganz, aber so ähnlich:
[mm] x'x''+f(x')x'+xx'=0\Rightarrow ((x')^2)'+(x^2)'=2( [/mm] x'x''+xx')=-2f(x')x'<0,
falls x nichtkonstant ist. Daraus folgt, dass [mm] x^2+(x')^2 [/mm] streng monoton fallend ist, was bei einer periodischen Lösung nicht sein kann.
> Und wie geht's weiter? Ist der Ansatz überhaupt brauchbar?
> Wegen der Ungleichung kann ich ja jetzt nicht einfach die
> Ableitungen links wegstreichen...
>
> Grüße, Harris
|
|
|
|