www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - poisson gleichung
poisson gleichung < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

poisson gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:36 Sa 01.03.2008
Autor: chasekimi

Aufgabe
WIr betrachten die Oissongleichung mit Dirichlet-Randbedingung auf dem Einheitsquadrat G=(0,1)x(0,1)
                        [mm] -\Delta [/mm] u(x)   =  f(x)   für x [mm] \varepsilon [/mm] G
mit f: G [mm] \to \IR, f(x_{1}, x_{2}) [/mm] = [mm] \bruch{486}{10}(x_{1}-x_{2})^{2} [/mm]
Bestimme eine Häherungslösung des obigen elliptischen Randwertproblems mit dem Differenzverfahren mit Schrittweite [mm] h=\bruch{1}{3} [/mm]

a) stelle das lineare Gleichungssystem für das Differenzverfahren auf.
b) Bestimme [mm] U_{11} [/mm] derart, dass der Vektor [mm] u^{h} =(U_{11}, \bruch{2}{10},\bruch{2}{10},\bruch{2}{10})^{T} [/mm] hier Lösung des Differenzverfahrens ist.welche annäherung erhalten wir für u in [mm] (\bruch{1}{3}, \bruch{2}{3}) [/mm]

Hi,

alaso mit der Aufgabe plage ich mich nun schon eine weile rum:

ich kann sagen, dass für a folgendes gilt:

[mm] \bruch{1}{h^2}\*Matrix \*U= [/mm] c

und das c = [mm] (f(x_{11},f(x_{12}),f(f(x_{21}),(f(x_{22}))^{T} [/mm] ist

aber irgendwie schaffe ich es nicht zu dem Gleichungssystem...kann mir jemand evtl weiterhelfen?



        
Bezug
poisson gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 Sa 01.03.2008
Autor: subclasser

Hallo!

Die Idee hinter dem Verfahren ist ja die Folgende: Ersetze den Laplaceoperator durch eine Differenzenapproximation:
[mm] $$\Delta [/mm] u(x, y) [mm] \approx \frac{1}{h^2} \left[ u(x-h, y) - 2u(x,y) +u(x+h, y) + u(x,y-h) - 2u(x,y) + u(x, y+h) \right]$$ [/mm] (du kannst ja einmal versuchen, diese Formel herzuleiten, falls du Lust hast)
Wenn du nun [mm] $U_{ij} [/mm] = u(i*h, j*h)$ für $i,j = 1,2$ setzt und deine Randbedingungen beachtest, erhälst du ja durch umschreiben das gewünschte Gleichungssystem. Das kannst du ja jetzt einmal alleine versuchen :-)

Gruß!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de