www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - pos.Definit=>Nicht-Degeneriert
pos.Definit=>Nicht-Degeneriert < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

pos.Definit=>Nicht-Degeneriert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:31 Fr 17.08.2007
Autor: pusteblume86

Hallo ihr,

ich lerne gerade für meine Zwischenprüfung und bin darauf gestoßen, dass Positivdefinitheit Nicht-Degeneriertheit impliziert.
Das wollte ich nun für mich beweisen, aber scheiter daran..

- V ist ein K-Vektorraum:

- Positiv-definites Skalarprodukt:   <u,u> >0 für alle u [mm] \in [/mm] V mit u [mm] \not= [/mm] 0
- Nicht-Degeneriertheit einer Bilinearform mit Basis [mm] v_1, ...,v_n: [/mm]
B [mm] \in M_n(K) [/mm] (beschreibende Matrix dieser Bilinearform)invertierbar , wenn kein w [mm] \in [/mm] V mit [mm] w\not=0 [/mm] mit <u,w> =0 [mm] \forall [/mm] u [mm] \in [/mm] V


Wie kann man an diesen Beweis herangehen?

ich habe es so versucht:

<u,w> = <u,u>+<u,w>+<w,u>+<w,w>-<u,u>-<w,w>-<w,u> =
               <u+w,u+w> - <u,u> - <w,w> -<w,u>

Nach Voraussetzung ist das Rotgeschriebene kleiner als 0

Aber ich komme nicht weiter und weiß nicht einmal ob es der richtige Ansatz war.

Kann mir da jemand helfen?

Lg Sandra

        
Bezug
pos.Definit=>Nicht-Degeneriert: Antwort
Status: (Antwort) fertig Status 
Datum: 19:01 Fr 17.08.2007
Autor: korbinian

Hallo,
ich komme mit deiner Bilinearform nicht ganz klar.
Ist sie symmetrisch?
Wie ist bei dir "nicht-degeneriert" definiert? Kommen wir hier ohne Matrix aus? Vielleicht so:
  
es gibt kein w [mm]\in[/mm] V mit [mm]w\not=0[/mm]
mit <u,w> =0 [mm]\forall[/mm] u [mm]\in[/mm] V

Gruß korbinian

Bezug
                
Bezug
pos.Definit=>Nicht-Degeneriert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:50 So 19.08.2007
Autor: pusteblume86

Hallihallo,

Nicht-Degeneriertheit habe ich in der Frage doch extra erklärt gehabt, stimmt also mehr oder weniger mit dem überein was du geschrieben hast.(bis auf den Zusammenhang zu invertierbaren Matrizen)

Ich bin davon ausgegangen, dass es in dem Scriptabsatz, nicht um symmetrische Bilinearformen geht..

Ist der Beweis nur mit symmetrischen Bilinearformen zu machen?


Lg Sandra

Bezug
                        
Bezug
pos.Definit=>Nicht-Degeneriert: Antwort
Status: (Antwort) fertig Status 
Datum: 11:30 So 19.08.2007
Autor: korbinian

Hallo
ist die Bilinearform nicht symmetrisch muss die Def. von nicht-degeneriert m.E. noch um
es gibt kein [mm] w\not=0 [/mm] mit <w,u>=0 [mm] \forall [/mm] u
ergänzt werden.
Wenn du damit einverstanden bist kannst du doch jetzt einen indirekten Beweis führen
Gruß korbinian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de