www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - potenzen mit gl.exponenten
potenzen mit gl.exponenten < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

potenzen mit gl.exponenten: Frage
Status: (Frage) beantwortet Status 
Datum: 15:41 Mo 24.01.2005
Autor: simon89

hi
ich hab hier so zwei problemchen!!

1.

schreibe ohne klammern

[mm] a^7 [/mm] x ( [mm] \bruch{1}{a})^7=?????????? [/mm]

2.

Vereinfache so weit wie möglich

[mm] \bruch{(2x+2)^2}{(x+1)^2}=???? [/mm]

hoffe könnt mir helfen bei diesen aufgaben!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
potenzen mit gl.exponenten: Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 15:57 Mo 24.01.2005
Autor: Loddar

Hallo Simon,

hast Du denn überhaupt keine eigenen Ideen??

Sieh' Dir doch mal die MBPotenzgesetze an ...


[mm]a^7 * \left( \bruch{1}{a} \right)^7 \ = \ a^7 * \left( a^{-1} \right)^7 \ = \ a^7 * a^{(-1) * 7} \ = \ a^7 * a^{-7} \ = \ a^{7 + (-7)} \ = \ a^{7 - 7} \ = \ a^{0} \ = \ 1[/mm]



Bei der zweiten Aufgabe kannst Du erstmal etwas ausklammern und anschließend kürzen ...


Versuch' das mal und poste doch Deine Ergebnisse zur Kontrolle, wenn Du möchtest ...


Grüße
Loddar


Bezug
        
Bezug
potenzen mit gl.exponenten: Antwort
Status: (Antwort) fertig Status 
Datum: 16:10 Mo 24.01.2005
Autor: Knaus

Also Aufgabe 1:

[mm] a^7 \* (1/a)^7 [/mm]  =>  [mm] a^7 \* (a^{-1})^7 [/mm]  => [mm] a^7 \* (a^{-7}) [/mm] => 1


Aufgabe 2:

Nun viel kann man da nicht machen, so meine Ansicht, die nicht umbedigt das Maß aller Dinge ist...

Ich denke das ist weit genug vereinfacht...  Im Grunde habe ich auch nur die Binomische Formel verwendet... wenn dir das reicht dann sollten die Aufgaben gelöst sein

greetz Knaus

[mm]\bruch{(2x+2)^2}{(x+1)^2} = [/mm] [mm] (\bruch{2x+2}{x+1})^2 [/mm] = [mm] \bruch{(4x^2+8x+4)}{(x^2+2x+1)} [/mm]

Bezug
                
Bezug
potenzen mit gl.exponenten: ein wenig geht noch
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:30 Mo 24.01.2005
Autor: hobbymathematiker


> Also Aufgabe 1:
>  
> [mm]a^7 \* (1/a)^7[/mm]  =>  [mm]a^7 \* (a^{-1})^7[/mm]  => [mm]a^7 \* (a^{-7})[/mm]

> => 1
>  
>
> Aufgabe 2:
>  
> Nun viel kann man da nicht machen, so meine Ansicht, die
> nicht umbedigt das Maß aller Dinge ist...
>  
> Ich denke das ist weit genug vereinfacht...  Im Grunde habe
> ich auch nur die Binomische Formel verwendet... wenn dir
> das reicht dann sollten die Aufgaben gelöst sein
>  
> greetz Knaus
>  
> [mm]\bruch{(2x+2)^2}{(x+1)^2} =[/mm] [mm](\bruch{2x+2}{x+1})^2[/mm] =
> [mm]\bruch{(4x^2+8x+4)}{(x^2+2x+1)}[/mm]
>  

[mm]\bruch{4(x^2+2x+1)}{(x^2+2x+1)}[/mm]


da müsste noch was gehen
Gruss
Eberhard

Bezug
                
Bezug
potenzen mit gl.exponenten: etwas umständlich ...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:56 Di 25.01.2005
Autor: Loddar

Das Ausmultiplizieren erscheint mir doch etwas umständlich:

[mm] $\bruch{(2x+2)^2}{(x+1)^2} [/mm] \ = \ [mm] \left( \bruch{2x+2}{x+1} \right)^2\ [/mm] = \ [mm] \left[ \bruch{2*(x+1)}{x+1} \right]^2 [/mm] \ = \ ...$


Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de