www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - pq-formel
pq-formel < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

pq-formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:21 So 13.04.2008
Autor: zitrone

hallo,

ich bearbeite momenatn die pq formel in der schule.
im grunde weiß ich , wie sie funktioniert, aber irgendwie kriege ich manchmal die richtige lösung raus und manchmal nicht.
z.b. bei diser aufgabe:

[mm] \bruch{22}{3}x= [/mm] x² + [mm] \bruch{35}{3} [/mm] | [mm] -\bruch{35}{3} [/mm] -x²

-x²+ [mm] \bruch{22}{3}+ \bruch{35}{3}= [/mm] 0 | :-1

x² - [mm] 7\bruch{1}{3}x [/mm] - [mm] 11\bruch{2}{3}= [/mm] 0

x1,2  = [mm] \bruch{7\bruch{1}{3}}{2} +-\wurzel{(\bruch{7\bruch{1}{3}}{2})² + 11\bruch{2}{3}} [/mm]

x1= 8,68

x2=-1,54

es müsste aber [mm] 2\bruch{1}{3} [/mm] und 5 heißen. ich komme aber nicht darauf.
könnte mir jemand sagen wo der fehler ist und ob es eine möglichkeit gibt, meine fehler einzuschränken?

gruß zitrone



        
Bezug
pq-formel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 So 13.04.2008
Autor: Josef

Hallo,


t.

>  z.b. bei diser aufgabe:
>  
> [mm]\bruch{22}{3}x=[/mm] x² + [mm]\bruch{35}{3}[/mm] | [mm]-\bruch{35}{3}[/mm] -x²
>  
> -x²+ [mm]\bruch{22}{3}+ \bruch{35}{3}=[/mm] 0 | :-1
>  
> x² - [mm]7\bruch{1}{3}x[/mm] - [mm]11\bruch{2}{3}=[/mm] 0

in solchen Rechnungen nie mit gemischten Zahlen [mm] 7\bruch{1}{3}x [/mm] , sondern stets mit gekürzten Brüchen rechnen!

>  
> x1,2  = [mm]\bruch{7\bruch{1}{3}}{2} +-\wurzel{(\bruch{7\bruch{1}{3}}{2})² + 11\bruch{2}{3}}[/mm]
>  
> x1= 8,68
>  
> x2=-1,54
>  
> es müsste aber [mm]2\bruch{1}{3}[/mm] und 5 heißen. ich komme aber
> nicht darauf.
>  könnte mir jemand sagen wo der fehler ist und ob es eine
> möglichkeit gibt, meine fehler einzuschränken?
>  



[mm] x^2 [/mm] - [mm] \bruch{22}{3}x +\bruch{35}{3} [/mm] = 0

[mm] x_{1;2} [/mm] = [mm] \red{\bruch{22}{6}}\pm\wurzel{(\bruch{22}{6})^2 -\bruch{35}{3}} [/mm]

[edit: bitte besser kürzen vor dem Weiterrechnen! Damit die Zahlen nicht so fehlerträchtig groß werden! informix]

[mm] x_{1;2} [/mm] = [mm] \bruch{22}{6} \pm \wurzel{\bruch{484}{36} - \bruch{420}{36}} [/mm]

[mm] x_{1;2} [/mm] = [mm] \bruch{22}{6} \pm \wurzel{\bruch{64}{36}} [/mm]

[mm] x_1 [/mm] = [mm] \bruch{22}{6} [/mm] + [mm] \bruch{8}{6} [/mm] => [mm] \bruch{30}{6} [/mm] => 5


[mm] x_2 [/mm] = [mm] \bruch{22}{6} [/mm] - [mm] \bruch{8}{6} [/mm] => [mm] \bruch{14}{6} [/mm] => [mm] 2\bruch{1}{3} [/mm]


Viele Grüße
Josef


Bezug
                
Bezug
pq-formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:33 So 13.04.2008
Autor: zitrone

hi,

danke!^^

nu hab ich nur noch eine kleinefrage, nämlich wie hast du die [mm] 7\bruch{1}{3} [/mm]
in [mm] \bruch{22}{6} [/mm] umgeformt?

gruß zitrone

Bezug
                        
Bezug
pq-formel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:41 So 13.04.2008
Autor: schachuzipus

Hallo zitrone,

Josef hat nicht [mm] $7\frac{1}{3}$ [/mm] in [mm] $\frac{22}{6}$ [/mm] umgewandelt, sondern [mm] $\frac{7\frac{1}{3}}{\blue{2}}$ [/mm]

Es ist ja [mm] $\red{7\frac{1}{3}}=7+\frac{1}{3}=7\cdot{}\frac{3}{3}+\frac{1}{3}=\frac{21}{3}+\frac{1}{3}=\red{\frac{22}{3}}$ [/mm]

Und damit ist also [mm] $\frac{\red{7\frac{1}{3}}}{\blue{2}}=\frac{\red{\frac{22}{3}}}{\blue{2}}=\frac{1}{2}\cdot{}\frac{22}{3}=\frac{22}{6}$ [/mm]


LG


schachuzipus

Bezug
                                
Bezug
pq-formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:58 So 13.04.2008
Autor: zitrone

hallo,

danke^^!!
also hab ich dann richtig gerechnet?

3x²-7x+2=0  |:3

[mm] x²-\bruch{7}{3}x+\bruch{2}{3}= [/mm] 0

x1,2 = [mm] \bruch{ \bruch{7}{3}}{2} [/mm] +- [mm] \wurzel{(\bruch{\bruch{7}{3}}{2})²-\bruch{2}{3}} [/mm]

x1,2= [mm] \bruch{7}{6}+- \wurzel{-\bruch{17}{36}} [/mm]

leere lösungsmenge

gruß zitrone

Bezug
                                        
Bezug
pq-formel: Antwort
Status: (Antwort) fertig Status 
Datum: 22:20 So 13.04.2008
Autor: SusanneK


>  also hab ich dann richtig gerechnet?

nein

>  
> 3x²-7x+2=0  |:3
>  
> [mm]x²-\bruch{7}{3}x+\bruch{2}{3}=[/mm] 0
>  
> x1,2 = [mm]\bruch{ \bruch{7}{3}}{2}[/mm] +-
> [mm]\wurzel{(\bruch{\bruch{7}{3}}{2})²-\bruch{2}{3}}[/mm]
>

[mm] (\bruch{\bruch{7}{3}}{2})² = (\bruch{7}{6})^2 = \bruch{49}{36} [/mm] und damit bekommst du dann doch eine Lösung.

> x1,2= [mm]\bruch{7}{6}+- \wurzel{-\bruch{17}{36}}[/mm]
>  
> leere lösungsmenge
>  
> gruß zitrone

LG, Susanne.


Bezug
                                                
Bezug
pq-formel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:10 Mo 14.04.2008
Autor: zitrone

hi,

danke.aber wenn ich


[mm] (\bruch{\bruch{7}{3}}{2})² [/mm]
im taschenrechner eingebe, bekomme ich [mm] \bruch{7}{36} [/mm] raus?! wo liegt den mein fehler?

gruß zitrone


Bezug
                                                        
Bezug
pq-formel: Antwort
Status: (Antwort) fertig Status 
Datum: 15:22 Mo 14.04.2008
Autor: Steffi21

Hallo, den Taschenrechner NICHT benutzen

[mm] \bruch{\bruch{7}{3}}{2}=\bruch{7}{3}:\bruch{2}{1}=\bruch{7}{3}*\bruch{1}{2}=\bruch{7}{6} [/mm]

jetzt das Quadrat bilden

[mm] (\bruch{7}{6})^{2}=\bruch{7}{6}*\bruch{7}{6}=\bruch{49}{36} [/mm]

Steffi

Bezug
                                                        
Bezug
pq-formel: Antwort
Status: (Antwort) fertig Status 
Datum: 15:29 Mo 14.04.2008
Autor: M.Rex

Hallo

Wenn du schon den TR benuzen willst, was ich dir nicht empfehle, dann setze Klammern.

Also: [mm] \left(\bruch{\bruch{7}{3}}{2}\right)^{2}=((7/3)/2)² [/mm]

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de