www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Prädikatenlogik" - prädikatenlogik
prädikatenlogik < Prädikatenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

prädikatenlogik: negation
Status: (Frage) beantwortet Status 
Datum: 18:43 Di 12.10.2010
Autor: mathetuV

aufgabe:

"jeder, der im raum ist, verlässt den raum."

mein ansatz:
[mm] \forall [/mm] x [mm] \in [/mm] U: P(x)--->R(x)

P(x): x ist im Raum
R(x):x verlässt den Raum

ist das richtig und wie lautet die negation?


MfG

        
Bezug
prädikatenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 Di 12.10.2010
Autor: reverend

Hallo mathetuV,

was ist U?
Sonst ok.

Die Negation ist natürlich "nicht jeder, der im Raum ist, verlässt den Raum". Will heißen, vielleicht bleiben alle, vielleicht gehen einige, aber mindestens einer bleibt.

Übrigens ist die normalsprachliche Formulierung blöd. Versuch mal zu klären, welche der beiden verknüpften Aussagen eigentlich tatsächlich präsentisch ist, wenn überhaupt eine. Dass das grammatische Tempus Präsens ist, hilft hier wohl nicht weiter.

Aber da verlassen wir die mathematische Logik und streifen schon fast die Sprachphilosophie.

Grüße
reverend


Bezug
                
Bezug
prädikatenlogik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Di 12.10.2010
Autor: mathetuV

danke erstmal für deine schnelle antwort.

also müsste es dann so aussehen?

[mm] \exists [/mm] x [mm] \in [/mm] U : [mm] \neg [/mm] P(x)----> [mm] \neg [/mm] R(x)

Übrigens ist U die menge aller personen

MFG

Bezug
                        
Bezug
prädikatenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 20:12 Di 12.10.2010
Autor: reverend

Hallo nochmal,

nicht ganz.

> $ [mm] \exists x\in U:\neg P(x)\to \neg [/mm] R(x) $

Es müsste heißen: $ [mm] \exists x\in U:\neg \red{R}(x)\to \neg \red{P}(x) [/mm] $

Alle Raben sind schwarz. Nicht alle schwarzen Objekte/Dinge/Lebewesen (hier herrscht eine kategoriale Unklarheit) sind Raben.

Dass der "normalsprachliche" Satz aber lautete "nicht alle Personen, die im Raum sind, verlassen den Raum", stiftet hier nur Verwirrung. Er ist nicht 1:1 formallogisch wiederzugeben. Die formallogische Repräsentation oben scheint daher fast willkürlich, ist aber so korrekt. Denk mal drüber nach. Wenn Du diese Negation wirklich verstehst (und nicht nur die Regel kennst), hast Du die größte Hürde der Formallogik genommen.

Grüße
reverend

Bezug
                                
Bezug
prädikatenlogik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:11 Di 12.10.2010
Autor: Sax

Hi, diese Antwort überzeugt mich nicht.

Wenn wir's formal angehen, dann sieht es doch so aus :

Aussage :  [mm] \forall x\in [/mm] U  :  P(x) [mm] \to [/mm] R(x)
Negation : [mm] \neg (\forall x\in [/mm] U  :  P(x) [mm] \to [/mm] R(x))
  [mm] \gdw \exists x\in [/mm] U  :  [mm] \neg [/mm] (P(x) [mm] \to [/mm] R(x))
  [mm] \gdw \exists x\in [/mm] U  :  [mm] \neg (\neg [/mm] P(x) [mm] \vee [/mm] R(x))
  [mm] \gdw \exists x\in [/mm] U  :  P(x) [mm] \wedge (\neg [/mm] R(x))

also umgangssprachlich : es gibt eine Person, die im Raum ist und ihn nicht verlässt.

Gruß Sax.

Bezug
                                        
Bezug
prädikatenlogik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:13 Di 12.10.2010
Autor: reverend

Hallo Sax,

guter und berechtigter Einwurf.
Jetzt sag mal noch, was an meinem eigentlich falsch ist. ;-)

Will heißen: Du hast Recht. Ich nicht?

Grüße
reverend


Bezug
                                                
Bezug
prädikatenlogik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:35 Di 12.10.2010
Autor: Sax

Hi,

Die Negation von A [mm] \to [/mm] B lautet nicht [mm] \neg [/mm] B [mm] \to \neg [/mm] A .
Bsp : "Wenn eine Zahl durch 2 teilbar ist, dann ist sie auch durch 10 teilbar" ist offenbar falsch, die Negation müsste also richtig sein.
Nun ist aber die Aussage "Wenn eine Zahl nicht durch 10 teilbar ist, dann ist sie auch nicht durch 2 teilbar" ebenfalls falsch, wie die Zahl 6 zeigt.

Richtig ist folgendes :
A [mm] \to [/mm] B ist gleichwerig mit [mm] \neg [/mm] A [mm] \vee [/mm] B .
Daher ist ihre Negation [mm] \neg (\neg [/mm] A [mm] \vee [/mm] B) und das ist nach deMorgan gleichwertig mit A [mm] \wedge \neg [/mm] B .

Gruß Sax.

Bezug
                                                        
Bezug
prädikatenlogik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:04 Di 12.10.2010
Autor: reverend

hm. Sieht gut aus.
Ich melde mich wieder....
Versprochen.

Danke jedenfalls für die Erläuterung!

Grüße
reverend


Bezug
                                        
Bezug
prädikatenlogik: ich bin nochmal hier
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:38 Mi 13.10.2010
Autor: mathetuV

kannst du mir bei diesem bsp helfen:

Keiner, der im Raum ist, verlässt den Raum:

[mm] \forall \in [/mm] U: P(x) -> [mm] \neg [/mm] R(x)

U ist die menge aller personen

Bezug
                                                
Bezug
prädikatenlogik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:52 Mi 13.10.2010
Autor: Sax

Hi,

das ist (bis auf das fehlende x beim Quantor) völlig richtig.

Übrigens ist die Aussage gleichwertig zu
[mm] \neg (\exists [/mm] x [mm] \in [/mm] U  :  P(x) [mm] \wedge [/mm]  R(x) )

Gruß Sax.

Bezug
                                                        
Bezug
prädikatenlogik: qouatoren
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:56 Mi 13.10.2010
Autor: mathetuV

kannst u mir bitte die neagtion davon zeigen, ich hätte jetz einfach die quatoren vertauscht

Bezug
                                                                
Bezug
prädikatenlogik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:16 Mi 13.10.2010
Autor: Sax

Hi,

Es gelten folgende formale Regeln :
A(x) : irgendeine Aussageform, dann ist

[mm] \neg [/mm] ( [mm] \exists [/mm] x [mm] \in [/mm] U : A(x) )   ist  [mm] \forall [/mm] x [mm] \in [/mm] U : [mm] \neg [/mm] A(x)
und
[mm] \neg [/mm] ( [mm] \forall [/mm] x [mm] \in [/mm] U : A(x) )   ist  [mm] \exists [/mm] x [mm] \in [/mm] U : [mm] \neg [/mm] A(x)

außerdem für zwei Aussageformen A(x) und B(x) :
[mm] \neg [/mm] ( A(x) [mm] \vee [/mm] B(x) )  ist  [mm] \neg [/mm] A(x) [mm] \wedge\ \neg [/mm] B(x)
und
[mm] \neg [/mm] ( A(x) [mm] \wedge [/mm] B(x) )  ist  [mm] \neg [/mm] A(x) [mm] \vee \neg [/mm] B(x)

schließlich
A(x) [mm] \to [/mm] B(x)  ist  [mm] \neg [/mm] A(x) [mm] \vee [/mm] B(x)
und [mm] \neg [/mm] ( [mm] \neg [/mm] A(x) )  ist  A(x)

ich hoffe, das das alle deine bisherigen und zukünftigen Fragen beantwortet.

Gruß Sax.

Bezug
                                                                        
Bezug
prädikatenlogik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:22 Mi 13.10.2010
Autor: reverend

Hallo Sax,

damit habe ich auch meinen Fehler gefunden. Danke!

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Prädikatenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de