projektive Ebene < axiomatisch < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Aufgabe 9.1. Sei (P,G,I) eine affine Ebene. Bezeichne mit G/|| die Menge der ” Richtungen“, also der ¨Aquivalenzklassen der ¨Aquivalenzrelation ” parallel“ .
Wie in der Vorlesung definieren wir eine neue Struktur ( ˆ P, ˆ G, ˆ I) wie folgt. Wir f¨ugen die Richtungen als neue Punkte hinzu: ˆ P := P⊔(G/||) Es gibt eine neue Gerade, genannt ”∞“: ˆ G := G⊔{∞} Drei Sorten von Inzidenzen: die Inzidenzen der gegebenen affinen Ebene; zus¨atzlich ist jede ” alte“ Gerade g ∈ G zu ihrer Richtung ¯ g ∈ G/|| inzident; zuletzt ist dieGerade ∞ genau zu den Richtungen inzident. ˆ I := I ⊔ {(¯g,g) : g ∈G} ⊔ {(¯ g,∞) : g ∈G}
Zeigen Sie, dass in dieser Struktur Axiom (P4) f¨ur projektive Ebenen gilt.
F¨ur die folgenden beiden Aufgaben sei ( ˆ P, ˆ G, ˆ I) eine projektive Ebene. Sei weiter ∞∈ ˆ G eine beliebige Gerade. Wie in der Vorlesung definieren wir eine neue Struktur( P,G,I) durch L¨oschen von ∞ wie folgt. P := ˆP \ {A Elementˆ P : (A,∞)∈ ˆ I}, G := [mm] ˆG\{∞}, [/mm] I := ˆI∩(P×G)
Aufgabe 9.2.
Zeigen Sie, dass in dieser Struktur Axiom (I3) f¨ur affine Ebenen gilt. Aufgabe 9.3.
Zeigen Sie, dass in dieser Struktur Axiom (P+) f¨ur affine Ebenen gilt. |
Ich komme bei Aufgabe 9.1 nicht klar. Ich bräuchte bitte Hilfe beim lösen dieser Aufgabe.
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
https://www.onlinemathe.de/forum/Projektive-Ebene-1
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:20 Di 07.01.2020 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|