www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - prüfe ob Ideal
prüfe ob Ideal < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

prüfe ob Ideal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:59 Mo 14.04.2014
Autor: elmanuel

Aufgabe
Ist [mm] I=\{\frac{a}{b}|a\in \IQ, b \in \IQ , und 5 teilt nicht b\} [/mm]

ein Ideal aus [mm] \IQ [/mm] ?

Hallo liebe Gemeinde!

Also ich dachte mir

für ein Ideal I aus [mm] \IQ [/mm] muss gelten

a*x liegt in I für alle a aus I und für alle x aus [mm] \IQ [/mm]

x*a liegt in I für alle a aus I und für alle x aus [mm] \IQ [/mm]

in unserem fall wäre aber

1/4 [mm] \in [/mm] I, 1/5 [mm] \in \IQ [/mm]

1/4 * 1/5 = 1/20  [mm] \notin [/mm] I

somit kein Ideal


korrekt?

        
Bezug
prüfe ob Ideal: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Mo 14.04.2014
Autor: UniversellesObjekt

Hallo,

ja, du hast Recht. Die Aufgabe ist totaler Blödsinn. Du kannst dir mit einem geschätzten Schreibaufwand von einer Zeile überlegen, dass es in einem Körper genau zwei Ideale gibt, nämlich die [mm] $0\mathbb{}$ [/mm] und den Körper selbst.

Da die Menge nichttriviale Element enthält, aber nicht ganz [mm] $\IQ$ [/mm] ist, ist sie also kein Ideal.

Liebe Grüße,
UniversellesObjekt

Bezug
                
Bezug
prüfe ob Ideal: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:18 Mo 14.04.2014
Autor: elmanuel

dankeschön!

Bezug
        
Bezug
prüfe ob Ideal: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Mo 14.04.2014
Autor: fred97


> Ist [mm]I=\{\frac{a}{b}|a\in \IQ, b \in \IQ , und 5 teilt nicht b\}[/mm]

Ergänzend: steht das wirklich so in der Aufgabenstellung ?

Wenn ja, so hab ich ein Problem: Sei [mm] c:=\bruch{1}{4}, [/mm] also a=1 und b=4. 5 teilt 4 nicht, also ist c [mm] \in [/mm] I.

Nun ist aber auch [mm] c=\bruch{5}{20} [/mm]  und 5 teilt 20, also c [mm] \notin [/mm] I. ????

Kommt in der Aufgabenstellunf möglicherweise das Wort "teilerfremd" vor ?

FRED

>  
> ein Ideal aus [mm]\IQ[/mm] ?
>  Hallo liebe Gemeinde!
>  
> Also ich dachte mir
>  
> für ein Ideal I aus [mm]\IQ[/mm] muss gelten
>
> a*x liegt in I für alle a aus I und für alle x aus [mm]\IQ[/mm]
>  
> x*a liegt in I für alle a aus I und für alle x aus [mm]\IQ[/mm]
>  
> in unserem fall wäre aber
>  
> 1/4 [mm]\in[/mm] I, 1/5 [mm]\in \IQ[/mm]
>  
> 1/4 * 1/5 = 1/20  [mm]\notin[/mm] I
>  
> somit kein Ideal
>  
>
> korrekt?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de