www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - punktweise Konvergenz
punktweise Konvergenz < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

punktweise Konvergenz: brauche nen Tipp
Status: (Frage) beantwortet Status 
Datum: 21:34 Di 10.01.2006
Autor: Phys

für [mm] f_{n}(x):=nx(1-x)^n [/mm] auf X[0;1] ist f=X-lim [mm] f_{n}=0 [/mm]

dieses Beispiel fiel bei uns in der Vorlesung, ich kann aber nicht verstehen wieso die Funktionenfolge gegen 0 konvergieren sollte und erst recht nicht wie man darauf kommt, da unser Prof dieses beispiel nicht näher erleuterte und die Rechnung nur mit: is trivial beschrieb, fehlt mir jeglicher Ansatz. Daher bitte ich um Hilfe, da diese Aufgabe fürs Verständniss sehr wichtig ist, vielen dank

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
punktweise Konvergenz: siehe hier
Status: (Antwort) fertig Status 
Datum: 22:32 Di 10.01.2006
Autor: mathmetzsch

Hallo,

die Frage wurd schon mal gestellt. Siehe dazu hier.

Viele Grüße
Daniel

Bezug
                
Bezug
punktweise Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:42 Di 10.01.2006
Autor: Phys

ja ich laß den link bereits, dachte aber dass es nicht ausreicht die Konvergenz der Folge [mm] a_{n}=na^n [/mm] zu im intervall[0,1] zu zeigen um die Aufgabe zu lösen, da es sich hier ja um eine Folge von Funktionen handet, aber reicht dies tatsächlich aus?

Bezug
                        
Bezug
punktweise Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 09:29 Mi 11.01.2006
Autor: Stefan

Hallo!

Doch, das reicht aus, weil es hier um die punktweise Konvergenz einer Funktionenfolge geht.

Das bedeutet nichts anderes als: Nehme dir ein $x$ und untersuche die Konvergenz der reellen Zahlenfolge [mm] $(f_n(x))_{n \in \IN}$. [/mm]

Von daher unterscheidet sich das nicht von Konvergenzfragen "normaler" Folgen.

Interessant wird die Konvergenz von Funktionenfolgen erst bei der Frage, ob die Konvergenz auch gleichmäßig (in $x$) ist.

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de