www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - punktweise/gleichmäßig konv.
punktweise/gleichmäßig konv. < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

punktweise/gleichmäßig konv.: Verständnis
Status: (Frage) beantwortet Status 
Datum: 15:34 Sa 31.03.2007
Autor: juerci

Ausrechnen ob eine Funktionenfolge gleichmäßig oder punktweise konvergent ist, ist kein Problem. Schwer tun tu ich mir nur beim graphischen Verständnis bezüglich [mm] \varepsilon [/mm] - Kriterium.....
Würde mich freun, wenn mir jemand helfen könnte, da ich nächste Woche eine mündliche Klausur habe, und unser Prof. auf graphische Darstellungen bzw. Erklärungen sehr viel Wert legt.

unsere Definitionen:

punktweise Konvergenz: [mm] \forall [/mm] x [mm] \in [/mm] D: [mm] \forall \varepsilon [/mm] > 0 [mm] \exists N(\varepsilon): [/mm]  | fn(x) - f(x)| < [mm] \varepsilon \forall [/mm] n > [mm] N(\varepsilon) [/mm]
glm. Konvergenz:  [mm] \forall \varepsilon [/mm] > 0 [mm] \exists N(\varepsilon): [/mm] | fn(x) - f(x)| < [mm] \varepsilon \forall [/mm] n > [mm] N(\varepsilon) \forall [/mm] x [mm] \in [/mm] D

oder mit Sup: [mm] \forall \varepsilon [/mm] > 0 [mm] \exists N(\varepsilon): [/mm] sup| fn(x) - f(x)| < [mm] \varepsilon \forall [/mm] n > [mm] N(\varepsilon) [/mm]

[Warum genügt es dies nur für das Supremum zu zeigen?????]

habe mir das immer bei folgenden Bsp. graphisch durchüberlegt, bin aber immer auf dem Holzweg gelandet:

fn(x) = [mm] x^{n} [/mm] für x [mm] \in [/mm] [0,1] => nicht glm. konv.  
fn(x) = [mm] \bruch{1}{x^{n}} [/mm] für x [mm] \in (1,\infinity) [/mm] => nicht glm. konvergent
fn(x) = [mm] \bruch{1}{(x+1)^{n}} [/mm] für x [mm] \in (1,\infinity) [/mm] => glm. konvergent


Danke im voraus!!

MFG Jürgen


        
Bezug
punktweise/gleichmäßig konv.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:00 Sa 31.03.2007
Autor: Hund

Hallo,

also zunächst zur punktweisen Konvergenz.
Angenommen man hat eine Funktionenfolge fn (x), dann bedeutet punktweise Konvergenz gerade, dass sie in jedem Punkt konvergiert, also wenn du einen beliebigen Punkt x nimmst, dann ist fn (x) eine gewöhnliche Folge die gegen ein f(x) konvergiert für n [mm] \to [/mm] unendlich. Das ist gerade die Aussage deiner Bedingung:
Für alle x und alle [mm] \varepsilon [/mm] gibt es ein [mm] N(\varepsilon,x) [/mm] so dass für alle größeren n sich die Werte der Folge und die der Grenzfunktion beliebig nah kommen.
Jetzt ist es aber so, dass das N nicht nur von [mm] \varepsilon [/mm] abhängt sondern auch von dem betrachteten Punkt x. Ist es nun möglich dass N nur von [mm] \varepsilon [/mm] abhängt und nicht vom Punkt x, also man in jedem Punkt dass gleiche [mm] N(\varepsilon) [/mm] wählen kann, so spricht man von gleichmäßiger Konvergenz. Zu gegebenem [mm] \varepsilon [/mm] gibt es ein [mm] N(\varepsilon), [/mm] so dass für alle größeren n die Funktionenfolge sich sozusagen in einer epsilon Schlaufe um die Grenzfunktionen befindet. Und deshalb das Supremum. Ist die Aussage für das Supremum erfüllt, so auch für alle anderen Abstände, da das Supremum ja das größte von allen ist.
Ich hoffe das hat dir geholfen.

Gruß
Hund

Bezug
                
Bezug
punktweise/gleichmäßig konv.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:11 So 01.04.2007
Autor: juerci

danke ich glaub jetzt hab ichs verstanden

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de