www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - q-adischer Bruch
q-adischer Bruch < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

q-adischer Bruch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:36 Do 24.11.2005
Autor: mathmetzsch

Hallo,

ich soll den Dezimalbruch 0,3333333..., also den Bruch [mm] \bruch{1}{3} [/mm] als 3-adischen bzw. 7-adischen Bruch darstellen. Wie das normalerweise funktioniert, ist mir klar.

Da muss man ja einfach die Zahl durch die jeweilige Basis immer teilen bis am Ende die Null dasteht. Ich weiß aber nicht, wie das mit der Periode funktioniert.

Hier vielleicht mal noch ein Beispiel:
[mm] 55_{10} [/mm] als 7-adischen Bruch:
55:7= 7 Rest 6
7:7=1 Rest 0
1:7=0 Rest 1

Also ist die Zahl 106.

Nur wie mache ich das bei der blöden Periode oder i.A. bei Kommazahlen?

Kann mir da vielleicht jemand helfen? Vielen Dank im Voraus.

VG Daniel

        
Bezug
q-adischer Bruch: Antwort
Status: (Antwort) fertig Status 
Datum: 13:51 Do 24.11.2005
Autor: Bastiane

Hallo!

> ich soll den Dezimalbruch 0,3333333..., also den Bruch
> [mm]\bruch{1}{3}[/mm] als 3-adischen bzw. 7-adischen Bruch
> darstellen. Wie das normalerweise funktioniert, ist mir
> klar.

Also, bei der Basis 3 ist das doch einfach - das ist genauso wie [mm] \bruch{1}{2} [/mm] zur Basis 2 oder auch wie [mm] \bruch{1}{10}=0,1 [/mm] zur Basis 10. Die Vorkommastellen haben ja die Wertigkeit (von links nach rechts) [mm] 3^n...3^2,3^1,3^0 [/mm] und die Nachkommastellen dementsprechend (ebenfalls von links nach rechts): [mm] 3^{-1}, 3^{-2}, 3^{-3}.... [/mm] Und da [mm] \bruch{1}{3}=3^{-1} [/mm] ist [mm] \left(\bruch{1}{3}\right)_{10}=0,1_3. [/mm]
Dementsprechend ist das dann zur Basis 7 so: [mm] 7^2, 7^1, 7^0, 7^{-1}, 7^{-2},... [/mm] und nun kannst du wieder dein altes Schema anwenden - ich habe gerade mal angefangen, die Darstellung müsste dann so anfangen: 0,22...
Soweit ich weiß kann es trotzdem passieren, dass eine Periode auftritt, dass die Zahl also in der darzustellenden Basis periodisch ist - was man dagegen tun kann (und ob überhaupt) ist mir irgendwie gerade entfallen...

Aber ich glaub', ich habe da hier auch schon mal drüber diskutiert - evtl. findest du eine alte Diskussion, wo etwas dazu gesagt wurde.

Viele Grüße
Bastiane
[cap]


Bezug
        
Bezug
q-adischer Bruch: Multiplikationen
Status: (Antwort) fertig Status 
Datum: 15:28 Do 24.11.2005
Autor: MathePower

Hallo mathmetzsch,

> Hallo,
>  
> ich soll den Dezimalbruch 0,3333333..., also den Bruch
> [mm]\bruch{1}{3}[/mm] als 3-adischen bzw. 7-adischen Bruch
> darstellen. Wie das normalerweise funktioniert, ist mir
> klar.
>  
> Da muss man ja einfach die Zahl durch die jeweilige Basis
> immer teilen bis am Ende die Null dasteht. Ich weiß aber
> nicht, wie das mit der Periode funktioniert.
>
> Hier vielleicht mal noch ein Beispiel:
>  [mm]55_{10}[/mm] als 7-adischen Bruch:
>  55:7= 7 Rest 6
>  7:7=1 Rest 0
>  1:7=0 Rest 1
>  
> Also ist die Zahl 106.
>  
> Nur wie mache ich das bei der blöden Periode oder i.A. bei
> Kommazahlen?

Bei einem echten Bruch [mm]\bruch{z}{n}[/mm] ermittelst Du die p-adische Darstellung wie folgt:

[mm] \begin{gathered} \alpha _0 : = \;z \hfill \\ \alpha _i \;p\; = \;\beta _i \;n\; + \;\gamma _i \hfill \\ \beta _i : = \;\left[ {\frac{{\alpha _i \;p}} {n}} \right] \hfill \\ \gamma _i : = \alpha _i \;p\;\bmod \;n \hfill \\ \alpha _{i + 1} \;: = \;\gamma _i \hfill \\ \end{gathered} [/mm]

Entweder gibt es jetzt Zahlen die sich wiederholen, d.h  es existiert ein k,l [mm]\in\IN_{0}[/mm] mit k > l, so daß [mm]\gamma_{k}\;=\;\alpha_{l} [/mm] ist, oder die p-adische Entwicklung bricht mit 0 ab.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de