www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - quadratische Funktional
quadratische Funktional < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

quadratische Funktional: Wie drücke ich phi aus?
Status: (Frage) beantwortet Status 
Datum: 20:53 Do 03.12.2020
Autor: rem

Aufgabe
Assume the quadratic function [mm] \phi(x) [/mm] = [mm] \bruch{1}{2}x^{T}Ax [/mm] − [mm] b^{T}x, x\in\IR^{2} [/mm] with A = [mm] \pmat{2 & -1\\ -1 & 2} [/mm] and some arbitrary [mm] b\in\IR^{2}. [/mm]  Determine the eigenvectors and eigenvalues of  A and represent the function [mm] \phi [/mm] in the coordinates of the orthonormal basis system consisting of the normalized eigenvectors.

Hallo,

ich habe ein Problem mit diesem Beispiel. Also der erste Teil ist mir klar, eigenwerte und eigenvektoren von A ausrechnen. Für die Eigenwerte bekomme ich [mm] \lambda_1 [/mm] = +1 und [mm] \lambda_2 [/mm] = +3 heraus. Für die zugehörigen Eigenwerte, erhalte ich dann [mm] \nu_1 [/mm] = [mm] \vektor{1 \\ 1} [/mm] sowie [mm] \nu_2 [/mm] = [mm] \vektor{-1 \\ 1}. [/mm]
Was aber ist im zweiten Teil der Aufgabe zu tun, also "[...]represent the function [mm] \phi [/mm] in the coordinates of the orthonormal basis system consisting of the normalized eigenvectors."? Sollen hier einfach die normalisierten Eigenvektoren für x in die quadratische Formel eingesetzt werden? Ich danke euch für jede Hilfe.

LG

        
Bezug
quadratische Funktional: Antwort
Status: (Antwort) fertig Status 
Datum: 06:57 Fr 04.12.2020
Autor: Gonozal_IX

Hiho,

die Darstellung von [mm] \phi [/mm] hängt ja von A ab… die Darstellung von A ist aber basisabhängig.
Nun hast du mit [mm] ${v_1,v_2}$ [/mm] eine weitere Basis gegeben (die im Übrigen noch nicht normiert ist, aber schon orthogonal, warum?).

Du sollst nun A (und damit [mm] \phi) [/mm] angeben in Bezug auf eine orthonormierte Basis aus den Eigenvektoren.
Heißt:
1.) Normiere die Basis
2.) Führe eine Basistransformation für A von der alten zur neuen Basis durch.

Gruß,
Gono

Bezug
                
Bezug
quadratische Funktional: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:47 So 06.12.2020
Autor: rem

Danke für deine Hilfe. Also ich verstehe das jetzt so:
Wie haben ja die Matrix A = [mm] \pmat{ 2 & -1 \\ -1 & 2 }. [/mm] Diese kann ich für das lineare Glg. System auch schreiben als [mm] x_1 \vektor{2 \\ -1} [/mm] + [mm] x_2\vektor{-1 \\ 2} [/mm] = [mm] \vektor{b_1 \\ b_2}. [/mm] Nun habe ich eine neue Basis von den orthonormalen eigenvectoren erhalten: [mm] v_1 [/mm] = [mm] \vektor{1/\wurzel{2}\\ 1/\wurzel{2}} [/mm] und [mm] v_2 [/mm] = [mm] \vektor{-1/\wurzel{2}\\ 1/\wurzel{2}}. [/mm] B = [mm] \pmat{ 1/\wurzel{2} & -1/\wurzel{2} \\ 1/\wurzel{2} & 1/\wurzel{2}} [/mm]
Nun wollen wir einen Basiswechsel der Matrix A durchführen. D.h.:

[mm] \pmat{ 2 & -1 \\ -1 & 2 } \vektor{x_1 \\ x_2} [/mm] = [mm] \pmat{ 1/\wurzel{2} & -1/\wurzel{2} \\ 1/\wurzel{2} & 1/\wurzel{2}} \underbrace{\pmat{ T_{11} & T_{12} \\ T_{12} & T_{22}}}_{T} \vektor{x_1 \\ x_2} [/mm] . Dabei ist T meine Transformationsmatrix.

Stimmt das soweit?

Bezug
                        
Bezug
quadratische Funktional: Antwort
Status: (Antwort) fertig Status 
Datum: 14:36 Mo 07.12.2020
Autor: meili

Hallo rem,

> Danke für deine Hilfe. Also ich verstehe das jetzt so:
>  Wie haben ja die Matrix A = [mm]\pmat{ 2 & -1 \\ -1 & 2 }.[/mm]
> Diese kann ich für das lineare Glg. System auch schreiben
> als [mm]x_1 \vektor{2 \\ -1}[/mm] + [mm]x_2\vektor{-1 \\ 2}[/mm] =
> [mm]\vektor{b_1 \\ b_2}.[/mm] Nun habe ich eine neue Basis von den
> orthonormalen eigenvectoren erhalten: [mm]v_1[/mm] =
> [mm]\vektor{1/\wurzel{2}\\ 1/\wurzel{2}}[/mm] und [mm]v_2[/mm] =
> [mm]\vektor{-1/\wurzel{2}\\ 1/\wurzel{2}}.[/mm] B = [mm]\pmat{ 1/\wurzel{2} & -1/\wurzel{2} \\ 1/\wurzel{2} & 1/\wurzel{2}}[/mm]
>  
> Nun wollen wir einen Basiswechsel der Matrix A
> durchführen. D.h.:
>  
> [mm]\pmat{ 2 & -1 \\ -1 & 2 } \vektor{x_1 \\ x_2}[/mm] = [mm]\pmat{ 1/\wurzel{2} & -1/\wurzel{2} \\ 1/\wurzel{2} & 1/\wurzel{2}} \underbrace{\pmat{ T_{11} & T_{12} \\ T_{12} & T_{22}}}_{T} \vektor{x_1 \\ x_2}[/mm]
> . Dabei ist T meine Transformationsmatrix.
>  
> Stimmt das soweit?  

[ok]

und

[mm]\pmat{ 1 & 0 \\ 0 & 1 } = \pmat{ 1/\wurzel{2} & -1/\wurzel{2} \\ 1/\wurzel{2} & 1/\wurzel{2}} \underbrace{\pmat{ T_{11} & T_{12} \\ T_{12} & T_{22}}}_{T} [/mm]
also
[mm]T = \pmat{ 1/\wurzel{2} & -1/\wurzel{2} \\ 1/\wurzel{2} & 1/\wurzel{2}}^{-1}[/mm]

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de