www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - quadratishe Gleichung
quadratishe Gleichung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

quadratishe Gleichung: Frage
Status: (Frage) beantwortet Status 
Datum: 13:01 Do 17.03.2005
Autor: searchgirl

Hallo,

also ich habe da echt mal ne blööde Frage. Ich habe sonst eigentlich kaum Probleme mit Fkt. auch nicht mit quadratischen. Aber wie bildet man eine quadratische Gleichung in der Form [mm] ax^2 [/mm] +bx+c wenn man 2 Punkte gegeben hat also P(x,y) und S(x2;y2)
????

ich hoffe jemand kann mir helfen.


schöne grüße

searchgirl

Achso und wenn ihr vielleicht noch bsp.aufgaben hättet wäre das noch besser.

        
Bezug
quadratishe Gleichung: Zuwenig Angaben ...
Status: (Antwort) fertig Status 
Datum: 13:56 Do 17.03.2005
Autor: Loddar

Hallo searchgirl!


> also ich habe da echt mal ne blööde Frage.

Na-na-na ...


> Aber wie bildet man eine quadratische Gleichung in der Form
> [mm]ax^2[/mm] +bx+c wenn man 2 Punkte gegeben hat also P(x,y)
> und S(x2;y2)

Das sind aber nicht genug Angaben ...

Wir haben doch insgesamt drei Unbekannte : a, b und c.

Dafür benötigen wir auch drei Informationen (z.B. Punkte oder Angaben über steigung, Symmetrien o.ä.).


Die ersten beiden Bestimmungsgleichungen lauten:

[mm] $y_P [/mm] \ = \ [mm] a*x_P^2 [/mm] + [mm] b*x_P [/mm] + c$

[mm] $y_S [/mm] \ = \ [mm] a*x_S^2 [/mm] + [mm] b*x_S [/mm] + c$


Gruß
Loddar


Bezug
                
Bezug
quadratishe Gleichung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:20 Do 17.03.2005
Autor: searchgirl

hallo nochmal,

also dann haben wir eben noch einen dritten Punkt k(x3;y3) gegeben.
schöne grüße
searchgirl

Bezug
                        
Bezug
quadratishe Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:45 Do 17.03.2005
Autor: Christian

Hallo.

Dann gehts dennoch genau so, wie Thorsten gesagt hat:
wenn Du die Punkte [mm] $P(x_p,y_p)$, $Q(x_q,y_q)$, $R(x_r,y_r)$ [/mm] gegeben hast, müssen diese ja der Funktionsgleichung [mm] $y=ax^2+bx+c$ [/mm] genügen.
Wenn Du die Punkte also einsetzt, erhältst Du die Gleichungen

[mm] $y_p [/mm] \ = \ [mm] a\cdot{}x_p^2 [/mm] + [mm] b\cdot{}x_P [/mm] + c $
[mm] $y_q [/mm] \ = \ [mm] a\cdot{}x_q^2 [/mm] + [mm] b\cdot{}x_q [/mm] + c $
[mm] $y_r [/mm] \ = \ [mm] a\cdot{}x_r^2 [/mm] + [mm] b\cdot{}x_r [/mm] + c $.

Das ist ein lineares Gleichungssystem mit 3 Gleichungen und 3 Variablen, das Du ganz leicht nach a, b, c auflösen kannst.

Gruß,
Christian

Bezug
                                
Bezug
quadratishe Gleichung: mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:25 Do 17.03.2005
Autor: searchgirl

o.k., danke
schöne grüße

searchgirl

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de