www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Numerik linearer Gleichungssysteme" - reduzible Matrix
reduzible Matrix < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

reduzible Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:35 Mi 06.07.2016
Autor: Mathe-Lily

Aufgabe
Def.: Die Matrix A [mm] \in \IR^{nxn} [/mm] heißt reduzibel, falls disjunkte, nichtleere Indexmengen I, J [mm] \subset [/mm] {1,...,n} existieren, sodass I [mm] \cup [/mm] J = {1,...,n} und [mm] a_{ij}=0 [/mm] für alle Paare (i,j) [mm] \in [/mm] I x J. Andernfalls heißt A irreduzibel.

Beispiel: Die Matrix A = [mm] \pmat{ 1 & 0 & 2 \\ 3 & 4 & 5 \\ 6 & 0 & 7 } [/mm] ist reduzibel mit I = {1,3}, J= {2}.

Bemerkung: Für reduzible Matrizen lässt sich das Lösen des linearen Gleichungssystems Ax=b zerlegen. Ist für X, Y [mm] \subset [/mm] {1,...,n} die Teilmatrix [mm] A_{XY} [/mm] definiert durch [mm] A_{XY}=(a_{ij})_{i \in X, j \in Y} [/mm] und der Teilvektor [mm] x_Y [/mm] durch [mm] x_Y [/mm] = [mm] (x_k)_{k \in Y}, [/mm] so gilt: [mm] A_{II}x_I=b_I [/mm] und [mm] A_{JJ}x_J=b_J-A_{JI}x_I. [/mm]

Hallo!

Ich habe versucht mir die Bemerkung an dem Beispiel klar zu machen, das vorher für die Definition von reduzibel stand. Daran bin ich bisher gescheitert:

Wir können X durch I und Y durch J ersetzen, oder? Müssten dann nicht bei den letzten beiden Gleichungen auch X, Y stehen statt I, J?

Außerdem verstehe ich die Teilmatrix [mm] A_{XY} [/mm] nicht: hier stehen nur die Einträge an den Stellen (i,j) mit i [mm] \in [/mm] I und j [mm] \in [/mm] J drin? Aber das ist doch nach der Def von reduziblen Matrizen = 0, oder?

Und was ist ein "Teilvektor"? Nur die Einträge an den Stellen j [mm] \in [/mm] J? Aber wäre das nicht auch wieder nur 0?

Irgendwas gravierendes scheine ich zu übersehen. Kann mir dabei jemand helfen?

Liebe Grüße, Lily

        
Bezug
reduzible Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 Mi 06.07.2016
Autor: meili

Hallo Lily,

> Def.: Die Matrix A [mm]\in \IR^{nxn}[/mm] heißt reduzibel, falls
> disjunkte, nichtleere Indexmengen I, J [mm]\subset[/mm] {1,...,n}
> existieren, sodass I [mm]\cup[/mm] J = {1,...,n} und [mm]a_{ij}=0[/mm] für
> alle Paare (i,j) [mm]\in[/mm] I x J. Andernfalls heißt A
> irreduzibel.
>  
> Beispiel: Die Matrix A = [mm]\pmat{ 1 & 0 & 2 \\ 3 & 4 & 5 \\ 6 & 0 & 7 }[/mm]
> ist reduzibel mit I = {1,3}, J= {2}.
>  
> Bemerkung: Für reduzible Matrizen lässt sich das Lösen
> des linearen Gleichungssystems Ax=b zerlegen. Ist für X, Y
> [mm]\subset[/mm] {1,...,n} die Teilmatrix [mm]A_{XY}[/mm] definiert durch
> [mm]A_{XY}=(a_{ij})_{i \in X, j \in Y}[/mm] und der Teilvektor [mm]x_Y[/mm]
> durch [mm]x_Y[/mm] = [mm](x_k)_{k \in Y},[/mm] so gilt: [mm]A_{II}x_I=b_I[/mm] und
> [mm]A_{JJ}x_J=b_J-A_{JI}x_I.[/mm]
>  Hallo!
>  
> Ich habe versucht mir die Bemerkung an dem Beispiel klar zu
> machen, das vorher für die Definition von reduzibel stand.
> Daran bin ich bisher gescheitert:
>  
> Wir können X durch I und Y durch J ersetzen, oder?
> Müssten dann nicht bei den letzten beiden Gleichungen auch
> X, Y stehen statt I, J?

X und Y werden verwendet um Teilmatrix und Teilvektor zu definieren.

In der Aussage der Bemerkung kommen dann mehrere verschiedene
Teilmatrizen [mm] ($A_{II}$, $A_{JJ}$ [/mm] und [mm] $A_{JI}$) [/mm] und Teilvektoren
[mm] ($x_I$, $x_J$, $b_I$ [/mm] und [mm] $b_J$) [/mm] vor.

>  
> Außerdem verstehe ich die Teilmatrix [mm]A_{XY}[/mm] nicht: hier
> stehen nur die Einträge an den Stellen (i,j) mit i [mm]\in[/mm] I
> und j [mm]\in[/mm] J drin? Aber das ist doch nach der Def von
> reduziblen Matrizen = 0, oder?

Bei dem gegebenen Beispiel ist:

[mm] $A_{II} [/mm] = [mm] \pmat{ a_{11} & a_{13} \\ a_{31} & a_{33} } [/mm] = [mm] \pmat{ 1 & 2 \\ 6 & 7 }$ [/mm]

[mm] $A_{JJ} [/mm] = [mm] \pmat{ a_{22} } [/mm] = [mm] \pmat{ 4 }$ [/mm]

[mm] $A_{JI} [/mm] = [mm] \pmat{ a_{21} & a_{23} } [/mm] = [mm] \pmat{ 3 & 5 }$ [/mm]

[mm] $x_I [/mm] = [mm] \vektor{x_1 \\ x_3 }$ [/mm]

[mm] $x_J [/mm] = [mm] \vektor{x_2}$ [/mm]

Zusammengesetzt:

[mm] $\pmat{ 1 & 2 \\ 6 & 7 }\vektor{x_1 \\ x_3 } [/mm] = [mm] \vektor{b_1 \\ b_3 }$ [/mm] und

[mm] $\left(4 \right) \left( x_2 \right) [/mm] = [mm] \left( b_2 \right) [/mm] - [mm] \pmat{ 3 & 5 }\vektor{x_1 \\ x_3}$ [/mm]

>  
> Und was ist ein "Teilvektor"? Nur die Einträge an den
> Stellen j [mm]\in[/mm] J? Aber wäre das nicht auch wieder nur 0?
>  
> Irgendwas gravierendes scheine ich zu übersehen. Kann mir
> dabei jemand helfen?
>  
> Liebe Grüße, Lily

Gruß
meili

Bezug
                
Bezug
reduzible Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:59 Do 07.07.2016
Autor: Mathe-Lily

Ah, jetzt verstehe ich das, vielen Dank! :-)

Bezug
                
Bezug
reduzible Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:34 Do 07.07.2016
Autor: Mathe-Lily

Hallo!

Jetzt habe ich doch noch eine Frage dazu:
Ist A reduzibel, wenn man mindestens eine solche Zerlegung in I und J findet, und nur dann irreduzibel, wenn man keine findet?

Auf diese Frage bin ich so gekommen:
Satz: Ist A irreduzibel und diagonaldominant, so sind Jacobi- und Gauß-Seidelverfahren durchführbar und konvergent.

In einer Bemerkung auf der Seite danach steht: Beide Voraussetzungen des Satzes werden benötigt, um eine Kontraktionseigenschaft der Iterationsmatrizen zu garantieren, wie das Beispiel A = [mm] \pmat{ \bruch{1}{2} & \bruch{1}{2} \\ 0 & 1 }, M^J= -D^{-1}(A-D) [/mm] = [mm] \pmat{ 0 & -1 \\ 0 & 0 } [/mm] zeigt. [mm] (M^J [/mm] ist die Iterationsmatrix des Jacobi-Verfahrens)

Ich versuche mir zur erklären, was das bedeutet:
A ist diagonaldominant und (wenn die Reduzibilitätsdefinition ist, wie ich sie oben beschrieben habe) reduzibel, dh. [mm] M^J [/mm] ist nicht kontraktiv, was gebraucht wird um die Existenz eines Fixpunktes und damit eine Konvergenz des Verfahrens zu gewährleisten.

Stimmt das? ^^

Liebe Grüße, Lily

Bezug
                        
Bezug
reduzible Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:51 Do 07.07.2016
Autor: fred97


> Hallo!
>  
> Jetzt habe ich doch noch eine Frage dazu:
>  Ist A reduzibel, wenn man mindestens eine solche Zerlegung
> in I und J findet, und nur dann irreduzibel, wenn man keine
> findet?

So ist es.


>
> Auf diese Frage bin ich so gekommen:
>  Satz: Ist A irreduzibel und diagonaldominant, so sind
> Jacobi- und Gauß-Seidelverfahren durchführbar und
> konvergent.
>  
> In einer Bemerkung auf der Seite danach steht: Beide
> Voraussetzungen des Satzes werden benötigt, um eine
> Kontraktionseigenschaft der Iterationsmatrizen zu
> garantieren, wie das Beispiel A = [mm]\pmat{ \bruch{1}{2} & \bruch{1}{2} \\ 0 & 1 }, M^J= -D^{-1}(A-D)[/mm]
> = [mm]\pmat{ 0 & -1 \\ 0 & 0 }[/mm] zeigt. [mm](M^J[/mm] ist die
> Iterationsmatrix des Jacobi-Verfahrens)
>  
> Ich versuche mir zur erklären, was das bedeutet:
>  A ist diagonaldominant und (wenn die
> Reduzibilitätsdefinition ist, wie ich sie oben beschrieben
> habe) reduzibel, dh. [mm]M^J[/mm] ist nicht kontraktiv, was
> gebraucht wird um die Existenz eines Fixpunktes und damit
> eine Konvergenz des Verfahrens zu gewährleisten.
>  
> Stimmt das? ^^

Ja

FRED

>  
> Liebe Grüße, Lily


Bezug
                                
Bezug
reduzible Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:32 Fr 08.07.2016
Autor: Mathe-Lily

Toll, danke! :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Numerik linearer Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de