reelle Polynome < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:18 Fr 29.11.2013 | Autor: | Petrit |
Aufgabe | In dieser Aufgabe zeigen wir einige wichtige Eigenschaften reeller Polynome. Seien f(x) := [mm] \summe_{i=0}^{n}a_{i}x^{i} [/mm] und g(x) := [mm] \summe_{j=0}^{m}b_{j}x^{j} [/mm] reelle Polynome, also [mm] a_{i}, b_{j} \in\IR [/mm] für i = 0, ... , n bzw. j = 0, ... , m mit [mm] a_{n}, b_{m} \not= [/mm] 0.
Zu zeigen:
1) Es existieren reelle Polynome q(x) := [mm] \summe_{j=0}^{l}c_{j}x^{j} [/mm] und r(x) := [mm] \summe_{j=0}^{k}d_{j}x^{j} [/mm] mit f = q*g + r und k<m.
2) Ist [mm] a\in\IR [/mm] eine Nullstelle von f, dann lässt sich f in der Form q*(x-a) schreiben, wobei q ein geeignetes Polynom ist. |
Hi!
Ich habe erst mal ein grundsätzliches Problem mit dieser Aufgabe. Ich weiß schon, was Polynome sind und wie man sie darstellen kann. Allerdings fällt mir für diese Aufgabe kein Ansatz ein, wie ich beginnen könnte.
Kann mir da vielleicht jemand auf die Sprünge helfen.
Ich bin für jeglichen Hinweis/Ansatz dankbar.
Viele Grüße, Petrit!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:03 Fr 29.11.2013 | Autor: | abakus |
> In dieser Aufgabe zeigen wir einige wichtige Eigenschaften
> reeller Polynome. Seien f(x) := [mm]\summe_{i=0}^{n}a_{i}x^{i}[/mm]
> und g(x) := [mm]\summe_{j=0}^{m}b_{j}x^{j}[/mm] reelle Polynome,
> also [mm]a_{i}, b_{j} \in\IR[/mm] für i = 0, ... , n bzw. j = 0,
> ... , m mit [mm]a_{n}, b_{m} \not=[/mm] 0.
>
> Zu zeigen:
> 1) Es existieren reelle Polynome q(x) :=
> [mm]\summe_{j=0}^{l}c_{j}x^{j}[/mm] und r(x) :=
> [mm]\summe_{j=0}^{k}d_{j}x^{j}[/mm] mit f = q*g + r und k<m.
> 2) Ist [mm]a\in\IR[/mm] eine Nullstelle von f, dann lässt sich f
> in der Form q*(x-a) schreiben, wobei q ein geeignetes
> Polynom ist.
> Hi!
> Ich habe erst mal ein grundsätzliches Problem mit dieser
> Aufgabe. Ich weiß schon, was Polynome sind und wie man sie
> darstellen kann. Allerdings fällt mir für diese Aufgabe
> kein Ansatz ein, wie ich beginnen könnte.
>
> Kann mir da vielleicht jemand auf die Sprünge helfen.
>
> Ich bin für jeglichen Hinweis/Ansatz dankbar.
>
> Viele Grüße, Petrit!
Hallo,
f=q*g+r ist äquivalent zu r=f-q*g.
Die Polynome f und g sind gegeben, dazu denkst du dir noch irgendein Polynom q aus.
Damit ergibt sich r quasi automatisch
(eben als f-q*g).
Ganz frei kannst du q allerdings nicht wählen, denn es muss ja wie verlangt k<m gelten.
Kommst du mit dieser Anregung weiter?
Gruß Abakus
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 22:34 Fr 29.11.2013 | Autor: | Petrit |
Noch nicht so ganz. Wie kann ich denn nun q wählen, was ist damit gemeint. Ich verstehe noch nicht so ganz. Den Rest habe ich verstanden.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:48 Sa 30.11.2013 | Autor: | leduart |
Hallo
mit gegebenen Polynomen würdest du eine Polynomdivision machen, um q zu finden (und r) dann die Probe, hier machst du die PrProbe! also multiplizierst aus. dann Koefizienten ansehen.
Gruss leduart
|
|
|
|