rekursive Folge und Konvergenz < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:35 Mo 23.05.2005 | Autor: | Mopetz |
Hallo!
Ich soll die folgende rekursive Folge auf Konvergenz untersuchen:
a1:=1, [mm] an+1:=\wurzel{1+an}
[/mm]
Konvergenz bedeutet doch, das die Folge beschränkt und monoton sein muss, richtig? Kann man bei einer rekursiven Folge irgendwie direkt den Grenzwert bestimmen und damit die Konvergenz zeigen, oder ist meine Überlegung die Monotonie und Beschränktheit zu zeigen ein guter Ansatz?
MfG
Mopetz
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:03 Mo 23.05.2005 | Autor: | Max |
Hallo Mopetz,
ich persönlich finde es gut, wenn man die Konvergenz über die Monotonie und Beschränktheit nachweist!
Manchmal hilft es aber auch, wenn man eine ungefähre Vorstellung hat, welche Grenzwerte bei einer rekursiven Folge in Frage kommen. dabei Hilft, dass im Fall der Konvergenz gilt: [mm] $\lim_{n\to \infty}a_n=\lim_{n\to \infty} a_{n+1}=a$ [/mm] und deshalb in deinem Fall: [mm] $a=\sqrt{1+a} \gdw a^2=1+a \gdw a^2-a-1=0 \gdw a=\frac{1\pm \sqrt{5}}{2}$. [/mm] Die Lösung [mm] $a=\frac{1-\sqrt{5}}{2}$ [/mm] entfällt, da die rekursive Gleichung nur für Werte größer $-1$ definiert ist.
In diesem Fall wird die Folge von [mm] $a_0=1$ [/mm] monoton steigend sein und gegen $a$ konvergieren. Hätte man ein [mm] $a_0>a$, [/mm] zB [mm] $a_0=3$, [/mm] würde die Folge monoton fallend sein gegen $a$.
Gruß Max
|
|
|
|