www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - rekursvie folge
rekursvie folge < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rekursvie folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:11 Fr 02.07.2010
Autor: rml_

Aufgabe
Es sei, für alle n e N die rekursiv definierte Folge(dn) mit [mm] d_1 [/mm] = 1, [mm] d_{n+1} [/mm] = [mm] d_n [/mm] + [mm] \bruch{1}{d_n} [/mm] gegeben.
a) Zeigen Sie mittels Induktion, dass für alle n e N gilt: [mm] d_n [/mm] > 1.
b) Zeigen Sie, dass die Folge dn monoton wachsend ist.
c) Zeigen Sie, dass die Folge (dn) nicht beschränkt ist.

hallo

schon lange her diese induktion:/
also ich hab das problem das ich das bei rekursive folgen nicht ganz verstehe, ich kenne die induktion nur von identitäten, da ist es einfacher...
aber wie geh ich bei einer rekursiven folge ran?
paar tipps ?

danke


        
Bezug
rekursvie folge: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 Fr 02.07.2010
Autor: schachuzipus

Hallo rml_,

> Es sei, für alle n e N die rekursiv definierte Folge(dn)
> mit [mm]d_1[/mm] = 1, [mm]d_{n+1}[/mm] = [mm]d_n[/mm] + [mm]\bruch{1}{d_n}[/mm] gegeben.
>  a) Zeigen Sie mittels Induktion, dass für alle n e N
> gilt: [mm]d_n[/mm] > 1.
>  b) Zeigen Sie, dass die Folge dn monoton wachsend ist.
>  c) Zeigen Sie, dass die Folge (dn) nicht beschränkt ist.
>  hallo
>  
> schon lange her diese induktion:/
>  also ich hab das problem das ich das bei rekursive folgen
> nicht ganz verstehe, ich kenne die induktion nur von
> identitäten, da ist es einfacher...
>  aber wie geh ich bei einer rekursiven folge ran?
>  paar tipps ?

Nun, so ganz stimmt die Aussage ja nicht, es ist ja [mm] $d_1=1\not> [/mm] 1$

Für $n>1$ stimmt's aber:

Einzig spannend ist der Induktionsschritt:

IV: Sei [mm] $n\in\IN$ [/mm] und gelte [mm] $d_n>1$ [/mm]

Dann ist [mm] $d_{n+1}=d_n+\frac{1}{d_n}$ [/mm] nach Def. Rekursion

$ [mm] >1+\frac{1}{d_n}$ [/mm] nach IV

Nun mache dir (am besten vorher) mal klar, dass [mm] $d_n>0$ [/mm] ist für alle [mm] $n\in\IN$ [/mm]

Damit auch [mm] $\frac{1}{d_n}>0$ [/mm] und schließlich [mm] $1+\frac{1}{d_n}>1+0=1$ [/mm]


> danke
>  

Gruß

schachuzipus

Bezug
                
Bezug
rekursvie folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:37 Fr 02.07.2010
Autor: rml_

danke für die ausführliche erklärung, hilft mir wirklich weiter

rml_

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de