www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - relative Extrema
relative Extrema < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

relative Extrema: Was machen wenn keine Aussage
Status: (Frage) beantwortet Status 
Datum: 14:33 So 08.02.2009
Autor: brichun

Aufgabe
[mm]f(x,y)=3x^2y-4y^3+12x[/mm]

erst Punkte dann  Min, Max, Sattel bestimmen.

[mm]f_i = \bruch{\partial f}{\partial i}[/mm]
damit ich nicht so viel schreiben muss ;-)


[mm]f_x=6xy+12[/mm]
[mm]f_y=3x^2-12y^2[/mm]

[mm]f_x=0 -> y=\bruch{-2}{x}[/mm]

y in [mm] F_y [/mm] einsetzen

[mm]f_y=0 [/mm]
[mm]0= 3x^2-\bruch{48}{x^2} [/mm]

[mm] x^2 [/mm] ausgeklammert

[mm] 0=x^2(3-\bruch{48}{x^4})[/mm]

x1=0
x2=2

jetzt hab ich folgende Punkte

[mm] P_1(0/0) [/mm]
[mm] P_2(2/1) [/mm]

Stimmen diese?

wenn bis hier alles korrekt war dann hab ich noch folgende Frage

wenn ich [mm] P_1 [/mm] mit der hinreichenden Bedingung überprüfe kommt  0=0 raus also keine Aussage.
Was ist dann dieser Punkt Sattel, Max oder Min?


Ich hab die Ausgangsgleichung verbessert!

        
Bezug
relative Extrema: falsch abgeleitet
Status: (Antwort) fertig Status 
Datum: 14:40 So 08.02.2009
Autor: Al-Chwarizmi


> [mm]f(x,y)=3x^3-4y^3+12x[/mm]
>  
> erst Punkte dann  Min, Max, Sattel bestimmen.
>  [mm]f_i = \bruch{\partial f}{\partial i}[/mm]
>  damit ich nicht so
> viel schreiben muss ;-)
>  
>  [mm]f_x=6xy-12[/mm]     [notok]
>  [mm]f_y=3x^2-12y^2[/mm]    [notok]


Falls du die obige Funktionsgleichung überhaupt
richtig wiedergegeben hast, sind diese beiden
partiellen Ableitungen falsch.

LG


Bezug
        
Bezug
relative Extrema: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:53 So 08.02.2009
Autor: brichun

mir ist gerade aufgefallen das ich das Vorzeichen bei [mm] f_x [/mm] vertauscht hab ich schau  gleich noch mal nach ob es jetzt stimmt.



Bezug
        
Bezug
relative Extrema: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:57 So 08.02.2009
Autor: brichun

Hat sich trotzdem nicht verändert ;-(

Bezug
        
Bezug
relative Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 15:07 So 08.02.2009
Autor: Tyskie84

Hallo,

deine Ableitungen sind nun richtig aber du musst die anderen Sachen auch verbessern.

Setzt jetzt nochmal [mm] \\y [/mm] in [mm] \\F_{y} [/mm] ein. Da erhälst du auch was anderes.

[hut] Gruß

Bezug
        
Bezug
relative Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 So 08.02.2009
Autor: angela.h.b.


> [mm]f(x,y)=3x^2y-4y^3+12x[/mm]
>  

>
> [mm]f_x=6xy+12[/mm]
>  [mm]f_y=3x^2-12y^2[/mm]
>  
> [mm]f_x=0 -> y=\bruch{-2}{x}[/mm]

Hallo,

an dieser Stelle könntest Du in des Teuels Küche kommen, und ich sehe unten, daß Du schon mittendrin sitzt im Schlamassel.

Für x=0 ist Dein schönes y nämlich überhaupt nicht definiert.

Generell mußt Du beim Dividieren immer aufpassen, daß Du nicht durch 0 dividierst. Dieser Fall ist auszuschließen und anschließend gesondert zu untersuchen.

[mm] y=\bruch{-2}{x} [/mm] gilt also nur für [mm] x\not=0. [/mm]


Der 2. Fall wäre x=0, welche in [mm] f_x=0 [/mm] einen Widerspruch ergibt. Daher muß [mm] x\not= [/mm] 0 sein, was zur Folge hat, daß der Nullpunkt überhaupt keiner der kritischen Punkte sein kann.


> y in [mm]F_y[/mm] einsetzen
>
> [mm]f_y=0[/mm]
>   [mm]0= 3x^2-\bruch{48}{x^2}[/mm]
>  
> [mm]x^2[/mm] ausgeklammert
>  
> [mm]0=x^2(3-\bruch{48}{x^4})[/mm]
>  
> x1=0
>  x2=2

Daß x=0 überhaupt nicht vorkommt in dieser Rechnung habe ich ja oben schon gesagt.  

Dann mußtest Du nochmal drüber nachdenken, welche Lösungen die Gleichung [mm] 3-\bruch{48}{x^4}=0 [/mm] hat.


> jetzt hab ich folgende Punkte
>
> [mm]P_1(0/0)[/mm]
>  [mm]P_2(2/1)[/mm]
>  
> Stimmen diese?
>  
> wenn bis hier alles korrekt war dann hab ich noch folgende
> Frage
>  
> wenn ich [mm]P_1[/mm] mit der hinreichenden Bedingung überprüfe
> kommt  0=0 raus also keine Aussage.
>  Was ist dann dieser Punkt Sattel, Max oder Min?

ich habe ja schon gesagt, daß Du diesen Punkt  überhaupt nicht herausbekommst.

Nichtsdestotrotz gibt es natürlich Situationen, in denen das hinreichende Kriterium versagt.
Hier könnte man dann die Umgebung des kritischen Punktes untersuchen. Bei einem Minimum müßten in einer Umgebung alle Funktionswerte [mm] \ge [/mm] dem im kritischen Punkt sein.

Gruß v. Angela


>  
>
> Ich hab die Ausgangsgleichung verbessert!


Bezug
                
Bezug
relative Extrema: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:56 So 08.02.2009
Autor: brichun

Danke schön Angela du hast wie immer mal recht und es sehr deutlich erklärt
;-)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de