www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - relative Extrema
relative Extrema < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

relative Extrema: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:19 Fr 16.07.2010
Autor: marc1001

Aufgabe
[mm] w=f_{x,y,z}=5x^2+6y^2+7z^2-4xy+4yz-10x+8y+14z-6 [/mm]

Bestimme Extremwerte und stellen

Hi,

ich habe ein kleines Problem bei der Bestimmung .

Zuerst bestimm ich ja die partiellen Ableitungen

[mm] f_x=10x-14 [/mm]
[mm] f_y=12y+8 [/mm]
[mm] f_z=14z+18 [/mm]

[mm] f_x_x=10 [/mm]
[mm] f_y_y=12 [/mm]
[mm] f_z_z=14 [/mm]

alle anderen Ableitungen sind 0

Die Nullstellen sind somit:
x=1,4
y=-1,5
z=9/7

aber die benötige ich die überhaupt?

Ich würde jetzt einfach die gleiche Matrix aufstellen wie bei 2 Variablen.
Ist das richtig?


[mm] \Delta=\pmat{10 & 0 & 0\\ 0 & 12 & 0\\ 0 & 0 & 14} [/mm]

Sind die hinreichenden Bedingungen jetzt die gleichen wie bei w= f_(x;y)?

[mm] \Delta [/mm] ist > 0 und [mm] f_x_x [/mm] > 0   ----> das wäre dann ja ein relatives Minimum im Punkt (1,4;-1,5;9/7)


Stimmt das soweit?
Muss ich bei 3 Variablen noch was anderes  beachten.

        
Bezug
relative Extrema: partielle Ableitungen falsch
Status: (Antwort) fertig Status 
Datum: 14:24 Fr 16.07.2010
Autor: Roadrunner

Hallo Marc!


Du solltest Dir Deine partiellen Ableitungen nochmals genau ansehen.

Ich erhalte z.B.:
[mm] $$f_x(x,y,z) [/mm] \ = \ 10x-4y-10$$

Gruß vom
Roadrunner


Bezug
                
Bezug
relative Extrema: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:02 Fr 16.07.2010
Autor: marc1001

Oh ,

wie dumm.

Klar:

[mm] f_x= [/mm] 10x-4y-10
[mm] f_y=12y-4x+4z+8 [/mm]
[mm] f_z=14z+4x+14 [/mm]

[mm] f_x_x=10; f_x_y=-4; f_x_z=0 [/mm]
[mm] f_y_x=12; f_y_y=-4; f_y_z=4 [/mm]
[mm] f_z_x=0; f_z_y=4; f_z_z=14 [/mm]

Hier wäre dann [mm] \Delta [/mm] =-48
-----> wäre doch dann ein Sattelpunkt ?



Bezug
                        
Bezug
relative Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 16:22 Fr 16.07.2010
Autor: MathePower

Hallo marc1001,

> Oh ,
>
> wie dumm.
>
> Klar:
>
> [mm]f_x=[/mm] 10x-4y-10
>  [mm]f_y=12y-4x+4z+8[/mm]
>  [mm]f_z=14z+4x+14[/mm]
>  
> [mm]f_x_x=10; f_x_y=-4; f_x_z=0[/mm]
>  [mm]f_y_x=12; f_y_y=-4; f_y_z=4[/mm]


Hier hast Du Dich sicherlich verschrieben:

[mm]f_y_x=\blue{-4}; f_y_y=\blue{12}; f_y_z=4[/mm]


>  
> [mm]f_z_x=0; f_z_y=4; f_z_z=14[/mm]
>  
> Hier wäre dann [mm]\Delta[/mm] =-48
> -----> wäre doch dann ein Sattelpunkt ?
>  

  

Das musst nochmal nachrechnen.


Gruss
MathePower

Bezug
                                
Bezug
relative Extrema: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:30 Fr 16.07.2010
Autor: marc1001

Es wohl einfach zu heiß heute :)

[mm] \Delta [/mm] = 1296

Aber der Weg an sich ist doch richtig ?

Bezug
                                        
Bezug
relative Extrema: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:43 Fr 16.07.2010
Autor: MathePower

Hallo marc1001,

> Es wohl einfach zu heiß heute :)
>  
> [mm]\Delta[/mm] = 1296


Offenbar hast Du hier die Determinante der Hesse-Matrix berechnet. [ok]


>
> Aber der Weg an sich ist doch richtig ?


Ja.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de