www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - richtungswinkel d. einheitsvek
richtungswinkel d. einheitsvek < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

richtungswinkel d. einheitsvek: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:35 So 18.11.2007
Autor: mickeymouse

Aufgabe
bestimme die fehlenden richtungswinkel eines einheitsvektors, von dem bekannt ist:
a) [mm] \alpha_{1} [/mm] = 60°
    [mm] \alpha_{2} [/mm] = 120°
    [mm] \alpha_{3} [/mm] = ?

b) [mm] \alpha_{1} [/mm] = ?
    [mm] \alpha_{2} [/mm] = ?
    [mm] \alpha_{3} [/mm] = 180°

c)  [mm] \alpha_{1} [/mm] = [mm] \alpha_{2} [/mm] = [mm] \alpha_{3} [/mm]
     wie groß ist [mm] \alpha_{1} [/mm] ?

die aufgabe muss man doch mit dem richtungskosinus lösen, oder?
also (cos [mm] \alpha_{1})^{2} [/mm] + (cos [mm] \alpha_{2})^{2} [/mm] + (cos [mm] \alpha_{3})^{2} [/mm] = 1
stimmt das?
aber ehrlich gesagt, weiß ich gar nicht, was die aufgabe egtl bedeutet, also räumlich gesehen, was man sucht...
bei welchen aufgaben braucht man denn diesen richtungskosinus?

dann zu den aufgaben...
bei der a) hab ich das mit dieser formel ausgerechnet und bekomm dann 45° raus. als lösung stehen aber 45° und 135° drin...wieso denn auch noch 135°?
zur b) als lösung steht dieses mal nur 90°...aber wieso nicht noch eine lösung wie bei der a)?
zur c) als lösungen stehen 54,7° und 125,2°...wie kommt man denn auf dieses ergebnis?

danke...:)

        
Bezug
richtungswinkel d. einheitsvek: geometrische Deutung
Status: (Antwort) fertig Status 
Datum: 15:43 Di 20.11.2007
Autor: Loddar

Hallo Mickeymouse!


Unter den gesuchten Winkeln versteht man die einzelnen Winkel, die der gegebene Einheitsvektor mit den einzelnen Koordinatenachsen einschließt.

Unter [mm] $\alpha_1$ [/mm] versteht man also den Winkel, welcher zwischen dem Vektor [mm] $\vec{e}$ [/mm] und der [mm] $x_1$-Achse [/mm] eingeschlossen wird.

Deine genannte Formel mit [mm] $\cos^2(\alpha_1)+\cos^2(\alpha_2)+\cos^2(\alpha_3) [/mm] \ = \ 1$ kannst Du hier nutzen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de