www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - rotationskörper
rotationskörper < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rotationskörper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:06 Di 16.12.2008
Autor: sunny1991

Aufgabe
der graph K der funktion f, die y-achse und die geraden mit den gleichungen y=c und y=d begrenzen eine fläche, die um die y-achse rotiert. bestimmen sie den rauminhalt des entstehenden körpers.
[mm] f(x)=\bruch{1}{3}x-2; [/mm] c=1; d=3

hallo,
bei der aufgabe komme ich nicht weiter. ich habe eingentlich überhaupt keinen ansatz. kann sein dass es etwas mit umkehrfunktionen zutun hat. also die formel für das volumen ist v= [mm] \pi*\integral_{c}^{d}{(\overline{f}(y)) ^{2}dy} [/mm] ich verstehe das irgendwie nicht. wäre dankbar für jegliche hilfe.
lg


        
Bezug
rotationskörper: Antwort
Status: (Antwort) fertig Status 
Datum: 16:29 Di 16.12.2008
Autor: reverend

Ja, kann sein, dass es mit der Umkehrfunktion zu tun hat.

Die brauchst Du ja erstmal, bevor Du Deine Formel anwenden kannst.

Nun ist ja [mm] y=f(x)=\bruch{1}{3}x-2. [/mm] Lies doch einfach mal das f(x) nicht mit, dann hast Du eine lineare Gleichung in x und y. Die formst Du so um, dass da steht: x=...

Das ist dann die Umkehrfunktion! [mm] x=\overline{f}(y)=... [/mm]

Die setzt Du schließlich in Deine Integralformel ein.

Bezug
                
Bezug
rotationskörper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 Di 16.12.2008
Autor: sunny1991

okay danke erstmal. also das habe ich auch gemacht. jetzt ist die frage muss ich dann [mm] (\overline{f}(y))^{2} oder\overline{f}(y) [/mm] nehmen, denn es ist doch eine funktion ersten gerades.


Bezug
                        
Bezug
rotationskörper: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 Di 16.12.2008
Autor: MathePower

Hallo sunny1991,

> okay danke erstmal. also das habe ich auch gemacht. jetzt
> ist die frage muss ich dann [mm](\overline{f}(y))^{2} oder\overline{f}(y)[/mm]
> nehmen, denn es ist doch eine funktion ersten gerades.
>  


Laut der Formel mußt Du [mm](\overline{f}(y))^{2} [/mm] nehmen.


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de