www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - scheitelpunktform
scheitelpunktform < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

scheitelpunktform: funktionsgleichung,graph,schei
Status: (Frage) beantwortet Status 
Datum: 18:42 So 07.10.2012
Autor: pls55

hallo

wie geht das: die funktionsgleichung  in der scheitelpunktform aufstellen, wenn die koordinaten des scheitelpunktes gegeben sind.?

danke

        
Bezug
scheitelpunktform: Antwort
Status: (Antwort) fertig Status 
Datum: 18:46 So 07.10.2012
Autor: Adamantin

Die Scheitelpunktsform ist gegeben mit:
[mm] $y=a(x-x_s)^2+y_s$, [/mm] wobei der Scheitelpunkt [mm] $S(x_y,y_s)$ [/mm] ist. Bei einer Normalparabel ist a natürlich gleich 1, ansonsten der Streckfaktor. Kennst du jetzt den Scheitelpunkt, brauchst du nur einsetzen und du hast eine mögliche Darstellung der Parabel. Um die Form [mm] $y=ax^2+bx+c$ [/mm] zu erhalten, brauchst du ferner nur ausmultiplizieren.

Man kann die Scheitelpunktsform auch mit den Parametern b,c direkt angeben, dies ist aber nicht nötig, wenn S bekannt ist.

Siehe für weitere Lektüre:

http://de.wikipedia.org/wiki/Scheitelpunktform#Scheitelpunktform

Bezug
                
Bezug
scheitelpunktform: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:52 So 07.10.2012
Autor: pls55

verstehe ich nich

Bezug
                        
Bezug
scheitelpunktform: Antwort
Status: (Antwort) fertig Status 
Datum: 19:01 So 07.10.2012
Autor: angela.h.b.


> verstehe ich nich

Hallo,

Adamamtin hat sich wirklich Mühe gegeben und viel für Dich getippt.
Ein schnödes "verstehe ich nicht" als Reaktion darauf finde ich sehr mager und irgendwie auch unfreundlich.

Wir erwarten von Dir, daß Du genau sagst, was Du weshalb nicht verstehst.
Dann wissen wir nämlich auch, wie wir Dir helfen können.

Wenn Du die Funktionsgleichung der Normalparabel angeben sollst, die den Scheitel S(4|5) hat, ist diese Gleichung gefragt:
[mm] f(x)=(x-4)^2+5. [/mm]
Ist halt genau das Umgekehrte wie beim Herausfinden des Scheitels aus der Scheitelpunktform.

Und wenn die Normalparabel umgekehrt sein soll, kommt halt ein Minus davor: [mm] f(x)=-(x-4)^2+5. [/mm]

LG Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de