www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - schnittpunkt mit f(x) achse
schnittpunkt mit f(x) achse < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

schnittpunkt mit f(x) achse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:03 Fr 12.11.2010
Autor: Foszwoelf

Aufgabe
[mm] 4x^3 [/mm] -4x
[mm] 2x^2-6x+4 [/mm]                           dazwischen ist der Bruchstrich

wenn ich den schnittpunkt mit der f(x) Achse bestimmen will setze ich ja im allgemeinen x=0 aber dann habe ich ja oben stehen 0 und unten 4  

wo liegt jetzt der schnitpunkt? Bei 0 (da 0:4=0 ) oder bei 4 ???

        
Bezug
schnittpunkt mit f(x) achse: Antwort
Status: (Antwort) fertig Status 
Datum: 20:12 Fr 12.11.2010
Autor: Big_Head78

[mm] \bruch{4x^3-4x}{2x^2 -6x+4} [/mm]

f(x=0)= [mm] \bruch{4*0x^3-4*0}{2*0^2 -6*0+4} [/mm]
        
        = [mm] \bruch{0}{4}=0 \Rightarrow [/mm] S(0/0)

Bezug
                
Bezug
schnittpunkt mit f(x) achse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:14 Fr 12.11.2010
Autor: Foszwoelf

ah ok also immer wenn ich oben auf dem Bruchstrich ne 0 habe habe ich einen Schnittpunkt S(0/0)

oder?

Bezug
                        
Bezug
schnittpunkt mit f(x) achse: Antwort
Status: (Antwort) fertig Status 
Datum: 20:22 Fr 12.11.2010
Autor: MathePower

Hallo Foszwoelf,

> ah ok also immer wenn ich oben auf dem Bruchstrich ne 0
> habe habe ich einen Schnittpunkt S(0/0)
>  
> oder?


Richtig.

Löse also

[mm]4*x^{3}-4*x=0[/mm]

Berücksichtige aber, daß [mm]2x^{2}-6*x+4 \not=0 [/mm]
für diese Lösungen sein muss.


Gruss
MathePower

Bezug
                                
Bezug
schnittpunkt mit f(x) achse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 Fr 12.11.2010
Autor: Foszwoelf

das kapier ich jetzt nicht

Bezug
                                        
Bezug
schnittpunkt mit f(x) achse: Antwort
Status: (Antwort) fertig Status 
Datum: 20:26 Fr 12.11.2010
Autor: schachuzipus

Hallo,


> das kapier ich jetzt nicht

Na, was wäre denn, wenn das der Fall wäre?

Dann wäre der Nenner 0 und du würdest durch 0 teilen ...

Gruß

schachuzipus


Bezug
                                                
Bezug
schnittpunkt mit f(x) achse: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:27 Fr 12.11.2010
Autor: Foszwoelf

ja und das ist nicht losbär 0durch0 geht ja nicht oder?

Bezug
                                                        
Bezug
schnittpunkt mit f(x) achse: Antwort
Status: (Antwort) fertig Status 
Datum: 20:36 Fr 12.11.2010
Autor: MathePower

Hallo Foszwoelf,

> ja und das ist nicht losbär 0durch0 geht ja nicht oder?


Ja, das ist zunächst mal nicht definiert.

Durch Grenzwertbildung kannst Du aber den
Wert an dieser Stelle ermitteln.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de