www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - schw.Konvergenz
schw.Konvergenz < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

schw.Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:04 Do 16.04.2009
Autor: Riley

Aufgabe
X sei ein Banachraum.
1.)
[mm] f_k \rightarrow [/mm] f in X'
[mm] x_k \rightarrow [/mm] x (schwach!)  in X
[mm] \Rightarrow f_k(x_k) \rightarrow [/mm] f(x)

2.) [mm] f_k \rightarrow [/mm] f (* schwach!)  in X'
[mm] x_k \rightarrow [/mm] (schwach!) in X

[mm] \Rightarrow f_k(x_k) \rightarrow [/mm] f(x)

Hallo,
ich hab eine Frage zu den beiden Aussagen.
Bei der ersten kann man ja so abschätzen:
[mm] |f(x_k) [/mm] - f(x) | [mm] \leq |f_k(x_k) [/mm] - [mm] f(x_k)| [/mm] + [mm] |f(x_k) [/mm] - f(x)|
                    
[mm] \leq \| f_k [/mm] - f [mm] \| \| x_k \| [/mm] + [mm] |f(x_k) [/mm] - f(x) | [mm] \rightarrow [/mm] 0

da ja wegen [mm] f_k \rightarrow [/mm] f [mm] \|f_k [/mm] - f [mm] \| \rightarrow [/mm] 0 und wegen der schwachen Konvergenz (ich weiß nicht wie man das halbe Pfeilzeichen eingibt) [mm] |f(x_k) [/mm] - f(x)| [mm] \rightarrow [/mm] 0.

Jetzt braucht man doch aber noch, dass [mm] \|x_k\| [/mm] beschränkt ist und nicht gegen unendlich abschwirrt, warum ist das so?

Die Aussage 2.) ist sicherlich falsch. Dazu habe ich in einem Buch ein Gegenbsp gefunden:
Betrachte [mm] l_2 [/mm] : [mm] \{ x = (x_j){j \in N} : \sum_{j=1}^{\infty} |x_j|^2 < \infty \} [/mm]

Sei nun [mm] x_k [/mm] = [mm] e_k [/mm] und [mm] f_k(x) [/mm] = x(k).

Dann folgt [mm] f_k(x_k) [/mm] = 1

aber [mm] f_k [/mm] konvergiert *schwach gegen 0 und [mm] x_k [/mm] gegen Null.

Zuerst verstehe ich nicht was x(k) bdeutet? Was macht das x mit dem k?
Und warum konvergiert [mm] f_k [/mm] *schwach gegen Null? Irgendwie fehlen mir hier ein paar Zwischenschritte....

Viele Grüße,
Riley

        
Bezug
schw.Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:39 Do 16.04.2009
Autor: fred97


> X sei ein Banachraum.
>  1.)
> [mm]f_k \rightarrow[/mm] f in X'
>  [mm]x_k \rightarrow[/mm] x (schwach!)  in X
>  [mm]\Rightarrow f_k(x_k) \rightarrow[/mm] f(x)
>  
> 2.) [mm]f_k \rightarrow[/mm] f (* schwach!)  in X'
>  [mm]x_k \rightarrow[/mm] (schwach!) in X
>  
> [mm]\Rightarrow f_k(x_k) \rightarrow[/mm] f(x)
>  Hallo,
>  ich hab eine Frage zu den beiden Aussagen.
>  Bei der ersten kann man ja so abschätzen:
>  [mm]|f(x_k)[/mm] - f(x) | [mm]\leq |f_k(x_k)[/mm] - [mm]f(x_k)|[/mm] + [mm]|f(x_k)[/mm] -
> f(x)|
>
> [mm]\leq \| f_k[/mm] - f [mm]\| \| x_k \|[/mm] + [mm]|f(x_k)[/mm] - f(x) | [mm]\rightarrow[/mm]
> 0
>  
> da ja wegen [mm]f_k \rightarrow[/mm] f [mm]\|f_k[/mm] - f [mm]\| \rightarrow[/mm] 0
> und wegen der schwachen Konvergenz (ich weiß nicht wie man
> das halbe Pfeilzeichen eingibt) [mm]|f(x_k)[/mm] - f(x)| [mm]\rightarrow[/mm]
> 0.
>  
> Jetzt braucht man doch aber noch, dass [mm]\|x_k\|[/mm] beschränkt
> ist und nicht gegen unendlich abschwirrt, warum ist das
> so?





Es konvergiere [mm] (x_k) [/mm] schwach gegen x. Also [mm] x'(x_k) \to [/mm] x'(x)  für jedes x' in X'

Fasse nun jedes [mm] x_k [/mm] und auch x als Elemente des Biduals X'' auf
(das habe ich Dir gestern erklärt !)

Dann ist [mm] (x_k) [/mm] eine Folge stetiger Linearformen auf X' und x ist eine stetige Linearform auf X'

[mm] x'(x_k) \to [/mm] x'(x)  für jedes x' in X' bedeutet nun gerade, dass [mm] (x_k) [/mm] auf X' punktweise gegn x konvergiert.

Der Satz von Banach-Steinhaus besagt nun:  [mm] (||x_k||) [/mm] ist beschränkt.





>  
> Die Aussage 2.) ist sicherlich falsch. Dazu habe ich in
> einem Buch ein Gegenbsp gefunden:
>  Betrachte [mm]l_2[/mm] : [mm]\{ x = (x_j){j \in N} : \sum_{j=1}^{\infty} |x_j|^2 < \infty \}[/mm]
>  
> Sei nun [mm]x_k[/mm] = [mm]e_k[/mm] und [mm]f_k(x)[/mm] = x(k).
>  
> Dann folgt [mm]f_k(x_k)[/mm] = 1
>
> aber [mm]f_k[/mm] konvergiert *schwach gegen 0 und [mm]x_k[/mm] gegen Null.
>  
> Zuerst verstehe ich nicht was x(k) bdeutet? Was macht das x
> mit dem k?


Sei x= (x(k)) [mm] \in l^2. f_k [/mm] leistet folgendes:

               [mm] f_k(x) [/mm] = x(k)

Für das k-te Folgenglied wird hier x(k) geschrieben, da die Bez. [mm] x_k [/mm] schon vegeben ist.



Das Funktional [mm] f_k [/mm] ordnet also x seine k-te Koordinate zu.



FRED





>  Und warum konvergiert [mm]f_k[/mm] *schwach gegen Null? Irgendwie
> fehlen mir hier ein paar Zwischenschritte....
>  
> Viele Grüße,
>  Riley


Bezug
                
Bezug
schw.Konvergenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:21 Do 16.04.2009
Autor: Riley

Hallo FRED,
danke für die Erklärungen - das hab ich nun verstanden!
Aber hier noch eine Rückfrage:

>
> Das Funktional [mm]f_k[/mm] ordnet also x seine k-te Koordinate zu.

>

bedeutet das also, dass
f(x) = [mm] \lim_{k \rightarrow \infty} f_k(x_k) [/mm] = 0 ist, da quasi die "unendlichste" Koordinate Null ist?

Und warum brauchen wir noch dass [mm] x_k [/mm] schwach gegen Null konvergiert ?

Viele Grüße,
Riley

Bezug
                        
Bezug
schw.Konvergenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mo 20.04.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                
Bezug
schw.Konvergenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:14 Di 21.04.2009
Autor: Riley

Hallo,
ich versteh das Gegenbsp. immernoch nicht so ganz.
Warum konvergiert [mm] f_k [/mm] *schwach gegen Null und warum konvergiert [mm] x_k [/mm] schwach gegen Null ?
Wäre super, wenn mir dazu noch jemand etwas schreiben könnte...
Viele Grüße,
Riley


Bezug
                        
Bezug
schw.Konvergenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Do 23.04.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de