www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - schwieriges Mehrfachintegral
schwieriges Mehrfachintegral < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

schwieriges Mehrfachintegral: hilfe^^ des muss doch klappen!
Status: (Frage) beantwortet Status 
Datum: 23:43 Mi 15.12.2010
Autor: spiitzbua

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
[http://www.onlinemathe.de/forum/komplizierte-Integration-1,
http://www.matheboard.de/thread.php?threadid=438980]

Meine Frage:
also es geht um folgendes ..
ich schreib grad mathe Facharbeit.
dafür muss ich u. a. volumina furch Mehrfachintegrale bestimmen.
Kommen wir zum Problem.
Eine figur(sternförmig) ist im [mm] R^3 [/mm] durch die gleichung
a= [mm] \wurzel{(abs (x))} [/mm] + [mm] \wurzel{(abs (y))} [/mm] +  [mm] \wurzel{(abs (z))} [/mm] gegeben.
wie gesagt volumen soll bestimmt werden.

abs sind betragsstriche

Meine Ideen:
Meine Idee:
also der körper is in jedem oktant schonmal symmetrisch. also bestimm ich nur des volumen im ersten oktanten.
integrieren will ich über die funktion f(x,y)=(a- [mm] \wurzel{(abs (x))} [/mm] - [mm] \wurzel{(abs (y))}^2 [/mm]
->bekomm ich dadurch in dem ich nach z auflös und die betragsstriche weglass weil ja nur im ersten oktanten gerechnet wird.

so integrationsbreich ist damit
B(x,y)=0 [mm] \le [/mm] x [mm] \le a^2 [/mm] ; 0 [mm] \le [/mm] y [mm] \le [/mm]  (a- [mm] \wurzel{(abs (x))})^2 [/mm]
->z ist ja gleich null um integrationsbereich -- also 0=(a- [mm] \wurzel{(abs (x))} [/mm] - [mm] \wurzel{(abs (y))} )^2 [/mm] .. .

so integral insgesamt ist dann

[mm] \integral_{0}^{a^2}{ d} \integral_{0}^{(a- \wurzel{x})^2 }{(a-\wurzel{x} - \wurzel{y})^2}dydx [/mm]


mein problem ! nach zweimaliger integration bekommt man folgenden ausdruck:
[]LINK!!
des fette unten mit 1/90 etc...
wenn man da jetzt die obere integrationsgrenze [mm] x=a^2 [/mm] einsetzt steht im nenner 0 !!!
WAS HAB ICH FALSCH GEMACHT ?? ?ich wär euch unendlich dankbar...



ok also der link geht nicht .. aber da steht im endeffekt dann n fetter ausdruck mit [( ...........)/(90 ( [mm] \wurzel{x} [/mm] - a ))

modedit: jetzt geht er. ;-)

        
Bezug
schwieriges Mehrfachintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 00:13 Do 16.12.2010
Autor: reverend

Hallo spiitzbua, [willkommenmr]

Ich habe mal Deinen Link repariert. Unsere Formelerkennung mochte offenbar die eckigen Klammern in sqrt[x] nicht, der Link funktionierte dann aber mit runden Klammern. Warum auch immer.

Zur Sache:

Bei der schönen Regelmäßigkeit der Funktion wärst Du sicher besser beraten, ein Dreifachintegral aufzustellen. Die Beschränkung auf den ersten (durchweg positiven) Oktanten ist dabei eine ausgezeichnete Idee. Sie erspart Dir die Betragsstriche - auch bei Wolfram...

Probiers mal.

Grüße
reverend


Bezug
                
Bezug
schwieriges Mehrfachintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:29 Do 16.12.2010
Autor: spiitzbua

naja also ob ich jetzt über ein dreifachintegral bei dem das innerste integral dann wohl so aussieht:
[mm] \integral_{0}^{(a- \wurzel{x} - \wurzel{y} )^2 }{1 dz} [/mm]

oder über des doppeltintegral mit den beiden anderen identischen äußeren integralen über die funktion (a- [mm] \wurzel{x} [/mm] - [mm] \wurzel{y} )^2 [/mm] ist wohl das selbe .. !?!

ja ich dachte eigentlich auch dass ich des drauf hab ^^ und versteh jetzt absolut nicht wo da n fehler sein kann .. =(

BITTE HELFT MIR ! wo ist mein fehler .. -. -

Bezug
                        
Bezug
schwieriges Mehrfachintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 22:36 Do 16.12.2010
Autor: MathePower

Hallo spitzbua,


> naja also ob ich jetzt über ein dreifachintegral bei dem
> das innerste integral dann wohl so aussieht:
>  [mm]\integral_{0}^{(a- \wurzel{x} - \wurzel{y} )^2 }{1 dz}[/mm]
>  
> oder über des doppeltintegral mit den beiden anderen
> identischen äußeren integralen über die funktion (a-
> [mm]\wurzel{x}[/mm] - [mm]\wurzel{y} )^2[/mm] ist wohl das selbe .. !?!
>
> ja ich dachte eigentlich auch dass ich des drauf hab ^^ und
> versteh jetzt absolut nicht wo da n fehler sein kann .. =(
>
> BITTE HELFT MIR ! wo ist mein fehler .. -. -


Nun, da wurde der Integrand umständlich ausgedrückt.

Dieser ergibt sich nämlich zu : [mm]\bruch{1}{6}*\left(\wurzel{x}-a\right)^{4}[/mm]


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de