www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - selbstadjungiert/eigenwerte
selbstadjungiert/eigenwerte < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

selbstadjungiert/eigenwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:45 Di 16.07.2013
Autor: drossel

Aufgabe
Sei [mm] dim_\mathbb{C}V [/mm] < [mm] \infty [/mm] , <,> hermitesche Form auf V, [mm] f\in [/mm] End(V).
es existiere ein [mm] h\in [/mm] End(V) , sodaß  [mm] f=h\circ [/mm] h* (h* ist die adjungierte Abbildung zu h),
beweise oder wiederlege:
1) f selbstadjungiert
2)f diagonalisierbar
3) [mm] \in \mathbb{R}_{\ge 0} \forall v\in [/mm] V.
4) Eigenwerte von f sind [mm] \in \mathbb{R}_{\ge 0} [/mm]
5) Sei nun f selbstadjungiert mit Eigenwerten [mm] \in \mathbb{R}_{>0} [/mm] . Gibt es ein [mm] h\in [/mm] End(V) mit [mm] f=h\circ [/mm] h* ?



zur 1 ) habe ich schon gezeigt, dass es stimmt
zur 2) auch ok, wahr
zur 4) Edit2: weiss, das der Spektralsatz nicht ausschließt, dass Eigenwerte negativ sein können. Wie ist das jetzt mit der Voraussetzung [mm] f=h\circ [/mm] h*? stimmt die Aussage dann nicht wieder?
wie geht man denn bei 3) vor?
Und bei 5)
f selbstadjungiert heißt <f(v),w>=<v,f(w)> für alle v,w [mm] \in [/mm] V. Und man hat
[mm] f(v)=\lambda [/mm] v , [mm] \lambda \in \mathhbb{R}_{>0}. [/mm]
Um eine Intuition zu bekommen: Wenn ich das ganze mit Matrizen mache, bedeutet dass ja [mm] A=B*\overline{B}^t [/mm]
A Darstellungsmatrix von f und B entsprechend für g bezüglich geeigneter Basen.  Ich denke die umgekehrte Richtung der Aussage stimmt, aber so wie es das steht weiss ich leider nicht.
Kann mir jemand einen Tip geben?
Mfg


        
Bezug
selbstadjungiert/eigenwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 06:35 Mi 17.07.2013
Autor: fred97

Zu 3)

<f(v),v>=<hh*v,v>=<h*v,h*v> [mm] \ge [/mm] 0

Zu 4)

Ist [mm] f(v)=\lambda [/mm] v, so folgt mit 3):

   [mm] \lambda [/mm] <v,v>=<f(v),v>=<h*v,h*v> [mm] \ge [/mm] 0

Zu 5)

Sei n=dim V, seien [mm] \lambda_1,..., \lambda_n [/mm] die Eigenwerte von f und sei [mm] v_1,...,v_n [/mm] eine ONB von V aus Eigenvektoren von f, also [mm] f(v_j)=\lambda_j v_j [/mm] und [mm] \lambda_j [/mm] >0

Dann:

    [mm] f(v)=\summe_{j=1}^{n} \lambda_j *v_j [/mm]   für jedes v [mm] \in [/mm] V.

Probier mal

   [mm] h(v):=\summe_{j=1}^{n} \wurzel{\lambda_j} *v_j [/mm]

aus.

FRED





Bezug
                
Bezug
selbstadjungiert/eigenwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:42 Mi 17.07.2013
Autor: drossel

Danke, habe alles bis auf der 3 verstanden. Wieso ist <h*(v),h*(v)> [mm] \ge [/mm] 0 ?

Bezug
                        
Bezug
selbstadjungiert/eigenwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 11:33 Mi 17.07.2013
Autor: Gonozal_IX

Hiho,

schau dir nochmal die Definition des Skalarprodukts an!

MFG,
Gono.

Bezug
                        
Bezug
selbstadjungiert/eigenwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:03 Mi 17.07.2013
Autor: drossel

Achso stimmt .. Danke sehr

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de