www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - separable Räume
separable Räume < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

separable Räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:30 Mi 20.04.2011
Autor: Salamence

Aufgabe
1) Sei X ein separbaler, metrischer Raum. Zeigen Sie, dass dann
$ [mm] \forall Y\in\mathcal [/mm] P(X): Y \ [mm] \text{separabel} [/mm] $

2) Zeigen Sie, dass [mm] l^{p}(\IR) [/mm] separabel [mm] \forall p\in[1,\infty) [/mm]

3) Ist auch [mm] l^{\infty}(\IR) [/mm] separabel?


Hallo!

Also die erste Aussage sollte irgendwie klar sein, eigentlich...

Sei $ [mm] A\subset [/mm] X $ abzählbar mit [mm] \overline(A)=X. [/mm]
Dann sollte [mm] \overline{A\cap Y}=Y [/mm] sein...
Nur muss man da wohl etwas aufpassen und es wird unschön, weil man Y ja mit der Relativtopologie betrachten muss, oder?

Zu 2):
[mm] \alpha_{n}:=(0,0,...,0,1,0,...) [/mm] mit 1 an der n-ten Stelle
[mm] A:=\{\alpha_{n}|n\in\IN\} [/mm]
Dann ist [mm] \overline{}=l^{p}(\IR), [/mm] also [mm] l^{p} [/mm] separabel

Zu 3):
Mmmh, ob das nun auch separabel, ist mir nicht ganz klar... Der Beweis wie in 2) sollte nicht funktionieren. Aber man könnte für jede beschränkte Folge reeller Zahlen doch Folgen von Folgen von rationalen Zahlen nehmen, die punktweise dagegen gehen. Das liegt ist doch abzählbar und liegt dicht drin, weil die Grenzwerte wieder im Abschluss sind oder täusche ich mich?

        
Bezug
separable Räume: Antwort
Status: (Antwort) fertig Status 
Datum: 11:40 Mi 20.04.2011
Autor: fred97


> 1) Sei X ein separbaler, metrischer Raum. Zeigen Sie, dass
> dann
> [mm]\forall Y\in\mathcal P(X): Y \ \text{separabel}[/mm]
>  
> 2) Zeigen Sie, dass [mm]l^{p}(\IR)[/mm] separabel [mm]\forall p\in[1,\infty)[/mm]
>  
> 3) Ist auch [mm]l^{\infty}(\IR)[/mm] separabel?
>  
> Hallo!
>  
> Also die erste Aussage sollte irgendwie klar sein,
> eigentlich...
>  
> Sei [mm]A\subset X[/mm] abzählbar mit [mm]\overline(A)=X.[/mm]
> Dann sollte [mm]\overline{A\cap Y}=Y[/mm] sein...
>  Nur muss man da wohl etwas aufpassen und es wird unschön,
> weil man Y ja mit der Relativtopologie betrachten muss,
> oder?


Diese Aufgabe ist nicht ganz einfach. Daher schau nach in  H:Heuser: Funktionalanalysis, §24 Aufgabe 6 (mit Lösung)

>  
> Zu 2):
> [mm]\alpha_{n}:=(0,0,...,0,1,0,...)[/mm] mit 1 an der n-ten Stelle
> [mm]A:=\{\alpha_{n}|n\in\IN\}[/mm]
> Dann ist [mm]\overline{}=l^{p}(\IR),[/mm] also [mm]l^{p}[/mm] separabel


Nicht ganz. betrachte alle Linearkombinationen der Elemente aus A mit rationalen Skalaren. Du brauchst doch eine abzählbare Menge die dicht liegt.


>  
> Zu 3):
>  Mmmh, ob das nun auch separabel, ist mir nicht ganz
> klar... Der Beweis wie in 2) sollte nicht funktionieren.
> Aber man könnte für jede beschränkte Folge reeller
> Zahlen doch Folgen von Folgen von rationalen Zahlen nehmen,
> die punktweise dagegen gehen. Das liegt ist doch abzählbar
> und liegt dicht drin, weil die Grenzwerte wieder im
> Abschluss sind oder täusche ich mich?

Tipp:  [mm]l^{\infty}(\IR)[/mm] ist nicht separabel


FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de