www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - seperabilität
seperabilität < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

seperabilität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:44 Mo 29.06.2009
Autor: oby

Aufgabe
Sei K [mm] \subseteq [/mm] L eine Körpererweiterung mit charK=p>0 . Zeigen Sie:
Ist a [mm] \in [/mm] L algebraisch über K,  so gibt es eine ganze Zahl n [mm] \ge [/mm] 0, so dass [mm] a^{p^n} [/mm] seperabel über K ist.

Hallo, Hallo alle zusammen,
Hab bis jetzt lediglich herausgefunden, was algebraisch bedeutet, und was eine Charakteristik eine Körpers ist, aber was bringt mir das hier? Weiß gar nicht wie ich hie anfangen soll. Kann algebraisch/charakteristik nicht in Zusammenhang mit Seperabilität bringen. Bitte helft mir hier weiter!
MfG Oby

        
Bezug
seperabilität: Antwort
Status: (Antwort) fertig Status 
Datum: 13:17 Mo 29.06.2009
Autor: SEcki


>  Hab bis jetzt lediglich herausgefunden, was algebraisch
> bedeutet, und was eine Charakteristik eine Körpers ist,

Und was heisst separabel?

> aber was bringt mir das hier? Weiß gar nicht wie ich hie
> anfangen soll. Kann algebraisch/charakteristik nicht in
> Zusammenhang mit Seperabilität bringen. Bitte helft mir
> hier weiter!

Betrachte das Minimalpolynom von a - kennst du dann Sätze, die Aussagen über irreduziblen Polynomen (hier das Min.pol) mit der Separabilität in Verbindung setzen?

SEcki

Bezug
        
Bezug
seperabilität: Antwort
Status: (Antwort) fertig Status 
Datum: 03:27 Mi 01.07.2009
Autor: felixf

Hallo Oby

> Sei K [mm]\subseteq[/mm] L eine Körpererweiterung mit charK=p>0 .
> Zeigen Sie:
>  Ist a [mm]\in[/mm] L algebraisch über K,  so gibt es eine ganze
> Zahl n [mm]\ge[/mm] 0, so dass [mm]a^{p^n}[/mm] seperabel über K ist.
>
>  Hallo, Hallo alle zusammen,
>  Hab bis jetzt lediglich herausgefunden, was algebraisch
> bedeutet, und was eine Charakteristik eine Körpers ist,
> aber was bringt mir das hier? Weiß gar nicht wie ich hie
> anfangen soll. Kann algebraisch/charakteristik nicht in
> Zusammenhang mit Seperabilität bringen. Bitte helft mir
> hier weiter!

Betrachte die Koerpererweiterung $K [mm] \subseteq [/mm] K(a)$; diese ist endlich (warum?). Betrachte nun den separablen Abschluss $E$ von $K$ in $K(a)$; du hast dann den Koerperturm $K [mm] \subseteq [/mm] E [mm] \subseteq [/mm] K(a)$, wobei $K [mm] \subseteq [/mm] E$ separabel ist und $E [mm] \subseteq [/mm] K(a)$ absolut inseparabel.

Jetzt beachte $K(a) = E(a)$, und entweder liegt $a$ schon in $E$ (womit du $n = 0$ waehlen kannst) oder $a$ ist rein inseparabel ueber $E$. Welche Form muss also das Minimalpolynom von $a$ ueber $E$ haben?

LG Felix


Bezug
                
Bezug
seperabilität: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:25 Mi 01.07.2009
Autor: oby

Vielen Dank!
Bins nochmal mit eurer Hilfe durchgegangen und Hab's verstanden!
Mfg, Oby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de