\sigma-Stetigkeit , Beweis? < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 04:25 So 28.04.2013 | Autor: | sissile |
Aufgabe | Ich verstehe den Beweis der [mm] \sigma-Stetigkeit [/mm] nicht!
Sein [mm] \mu [/mm] ein Maß auf [mm] (\Omega [/mm] , [mm] \mathcal{A}) [/mm] und [mm] A_n \in \mathcal{A}, [/mm] n [mm] \ge [/mm] 1
[mm] \sigma- [/mm] Stetigkeit: Sei [mm] A_n \uparrow [/mm] A (d.h. A = [mm] \bigcap_{i\ge1} A_i [/mm] und [mm] A_{i+1} \subset A_i) [/mm] und [mm] \mu(A_k) [/mm] < [mm] \inft [/mm] für k [mm] \in \IN
[/mm]
damm [mm] \mu(A)= lim_{n->\infty} \mu(A_n) [/mm] |
Hallo,
Beweis im SKript:
Setze [mm] B_n [/mm] = [mm] A_i \setminus A_{i+1}
[/mm]
Dann A, [mm] B_i, [/mm] i [mm] \ge [/mm] 1 sind paarweise disjunkt daszu A [mm] \cup \bigcup_{i\ge1}^\infty B_i =A_1
[/mm]
[mm] \sigma-Additivitaet:
[/mm]
P(A) + [mm] \sum_{i\ge1} P(B_i)= P(A_1)
[/mm]
P(A)= [mm] P(A_1)- \sum_{i \ge 1} P(B_i)= P(A_1) [/mm] - [mm] lim_{n->\infty} \sum_{i=1}^n P(B_i)= lim_{n->\infty} P(A_1) -\sum_{i=1}^n P(B_i)= lim_{n->\infty} P(A_{n+1})
[/mm]
Meine Fragen:
1) Warum sind A und [mm] B_i [/mm] paarweise disjunkt?
2) Wieso kann man [mm] A_1 [/mm] in A und [mm] \bigcup_{i\ge1} B_i [/mm] zerlegen?
3) Was wird ich letzten = SChritt gemacht?
> [mm] lim_{n->\infty} P(A_1) -\sum_{i=1}^n P(B_i)= lim_{n->\infty} P(A_{n+1})
[/mm]
Liebe Grüße
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 06:28 So 28.04.2013 | Autor: | tobit09 |
Hallo sissile,
> Sein [mm]\mu[/mm] ein Maß auf [mm](\Omega[/mm] , [mm]\mathcal{A})[/mm] und [mm]A_n \in \mathcal{A},[/mm]
> n [mm]\ge[/mm] 1
> [mm]\sigma-[/mm] Stetigkeit: Sei [mm]A_n \uparrow[/mm] A (d.h. A =
> [mm]\bigcap_{i\ge1} A_i[/mm] und [mm]A_{i+1} \subset A_i)[/mm]
[mm] $\downarrow$ [/mm] statt [mm] $\uparrow$ [/mm] meinst du wohl...
> und [mm]\mu(A_k)[/mm] <
> [mm]\inft[/mm] für k [mm]\in \IN[/mm]
[mm] $\mu(A_k)<\infty$ [/mm] für ein oder alle [mm] $k\in\IN$? [/mm] Der Beweis funktioniert so wie er formuliert ist, nur wenn dies für $k=1$ (und somit für alle [mm] $k\in\IN$) [/mm] gilt.
> damm [mm]\mu(A)= lim_{n->\infty} \mu(A_n)[/mm]
> Beweis im SKript:
> Setze [mm]B_n[/mm] = [mm]A_i \setminus A_{i+1}[/mm]
Offenbar soll $n=i$ sein...
> Dann A, [mm]B_i,[/mm] i [mm]\ge[/mm] 1
> sind paarweise disjunkt daszu A [mm]\cup \bigcup_{i\ge1}^\infty B_i =A_1[/mm]
>
> [mm]\sigma-Additivitaet:[/mm]
> P(A) + [mm]\sum_{i\ge1} P(B_i)= P(A_1)[/mm]
Offenbar [mm] $P=\mu$... [/mm]
> P(A)= [mm]P(A_1)- \sum_{i \ge 1} P(B_i)[/mm]
Diese Umformung macht nur im Falle [mm] $\mu(A_1)<\infty$ [/mm] Sinn.
> [mm]= P(A_1)[/mm]
> - [mm]lim_{n->\infty} \sum_{i=1}^n P(B_i)= lim_{n->\infty} P(A_1) -\sum_{i=1}^n P(B_i)= lim_{n->\infty} P(A_{n+1})[/mm]
> Meine Fragen:
> 1) Warum sind A und [mm]B_i[/mm] paarweise disjunkt?
Für die Vorstellung kann ein Bildchen helfen. Formal lässt sich das wie folgt zeigen:
Sei [mm] $i\ge [/mm] 1$. Dann sind $A$ und [mm] $B_i$ [/mm] disjunkt: Denn angenommen [mm] $\omega\in A\cap B_i$. [/mm] Dann wegen [mm] $\omega\in A=\bigcap_{n\ge 1}A_n$ [/mm] insbesondere [mm] $\omega\in A_{i+1}$, [/mm] aber wegen [mm] $\omega\in B_i$ [/mm] insbesondere [mm] $\omega\not\in A_{i+1}$, [/mm] Widerspruch.
Seien [mm] $i,j\ge [/mm] 1$ mit [mm] $i\not=j$. [/mm] Dann sind [mm] $B_i$ [/mm] und [mm] $B_j$ [/mm] disjunkt: Sei etwa $i<j$ (sonst $j<i$ und dieser Fall kann analog behandelt werden oder aus Symmetriegründen auf den Fall $i<j$ zurückgeführt werden). Also [mm] $i+1\le [/mm] j$. Angenommen nun [mm] $\omega\in B_i\cap B_j$. [/mm] Dann gilt wegen [mm] $\omega\in B_j$ [/mm] insbesondere [mm] $\omega\in A_{j}\subset A_{j-1}\subset\ldots\subset A_{i+1}$. [/mm] Aber wegen [mm] $\omega\in B_i$ [/mm] auch [mm] $\omega\not\in A_{i+1}$.
[/mm]
> 2) Wieso kann man [mm]A_1[/mm] in A und [mm]\bigcup_{i\ge1} B_i[/mm]
> zerlegen?
Wieder ist ein Bild nicht schlecht zur Veranschaulichung. Formal:
[mm] $A_1\subseteq A\cup\bigcup_{i\ge1}B_i$: [/mm] Sei [mm] $\omega\in A_1$. [/mm] Falls [mm] $\omega\in [/mm] A$ sind wir fertig. Falls [mm] $\omega\not\in [/mm] A$, existiert ein (minimales) [mm] $i\ge [/mm] 1$ mit [mm] $\omega\not\in A_i$. [/mm] Wegen [mm] $\omega\in A_1$ [/mm] muss [mm] $i\not= [/mm] 1$, also [mm] $i\ge [/mm] 2$ und somit [mm] $i-1\ge [/mm] 1$ gelten. Da $i$ minimal gewählt war mit [mm] $\omega\not\in A_i$ [/mm] muss [mm] $\omega\in A_{i-1}$ [/mm] gelten. Also [mm] $\omega\in A_{i-1}\A_i=B_i$.
[/mm]
[mm] $A_1\supseteq A\cup\bigcup_{i\ge1}B_i$: [/mm] Sei [mm] $\omega\in A\cup\bigcup_{i\ge1}B_i$. [/mm] Falls [mm] $\omega\in [/mm] A$ folgt [mm] $\omega\in A_1$. [/mm] Sei nun [mm] $\omega\in B_i$ [/mm] für ein [mm] $i\ge1$. [/mm] Dann insbesondere [mm] $\omega\in A_i\subset A_{i-1}\subset\ldots\subset A_1$. [/mm]
> 3) Was wird ich letzten = SChritt gemacht?
> > [mm]lim_{n->\infty} P(A_1) -\sum_{i=1}^n P(B_i)= lim_{n->\infty} P(A_{n+1})[/mm]
Wegen der paarweisen Disjunktheit der [mm] $B_i$ [/mm] gilt [mm] $\sum_{i=1}^n P(B_i)=P(\bigcup_{i=1}^nB_i)$.
[/mm]
Wegen [mm] $\bigcup_{i=1}^nB_i\subseteq A_1$ [/mm] gilt [mm] $P(A_1)-P(\bigcup_{i=1}^nB_i)=P(A_1\setminus(\bigcup_{i=1}^nB_i))$.
[/mm]
Aber [mm] $A_1\setminus(\bigcup_{i=1}^nB_i)=A_{n+1}.
[/mm]
(Wieder hilft dazu ein Bildchen. Formal:
Sei zunächst [mm] $\omega\in A_1\setminus(\bigcup_{i=1}^nB_i)$. [/mm]
Dann folgt [mm] $\omega\in A_1$.
[/mm]
Wegen [mm] $\omega\not\in B_1=A_1\setminus A_2$ [/mm] folgt [mm] $A_1\in A_2$. [/mm] Wegen [mm] $\omega\not\in B_2=A_2\setminus A_3$ [/mm] folgt [mm] $\omega\in A_3$.
[/mm]
...
Wegen [mm] $\omega\not\in B_n=A_n\setminus A_{n+1}$ [/mm] folgt: [mm] $\omega\in A_{n+1}$.
[/mm]
Sei umgekehrt [mm] $\omega\in A_{n+1}$. [/mm] Dann ist [mm] $\omega\in A_{n+1}\subseteq A_n\subseteq\ldots\subseteq A_1$, [/mm] also [mm] $\omega\in A_1$ [/mm] und [mm] $\omega\in A_{i+1}$ [/mm] für alle [mm] $i=1,\ldots,n$ [/mm] und somit [mm] $\omega\not\in B_i$ [/mm] für diese $i$. Also [mm] $\omega\in A_1\setminus\bigcup_{i=1}^nB_i$.
[/mm]
)
Viele Grüße
Tobias
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:29 So 28.04.2013 | Autor: | sissile |
Vielen dank.
Woher kommt die eigenschaft:
> Wegen $ [mm] \bigcup_{i=1}^nB_i\subseteq A_1 [/mm] $ gilt $ [mm] P(A_1)-P(\bigcup_{i=1}^nB_i)=P(A_1\setminus(\bigcup_{i=1}^nB_i)) [/mm] $.
lg
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:40 So 28.04.2013 | Autor: | tobit09 |
> Woher kommt die eigenschaft:
> > Wegen [mm]\bigcup_{i=1}^nB_i\subseteq A_1[/mm] gilt
> [mm]P(A_1)-P(\bigcup_{i=1}^nB_i)=P(A_1\setminus(\bigcup_{i=1}^nB_i)) [/mm].
Für alle Mengen [mm] $C,D\in\mathcal{A}$ [/mm] mit [mm] $C\subseteq [/mm] D$ und [mm] $P(D)<\infty$ [/mm] gilt [mm] $P(D\setminus [/mm] C)=P(D)-P(C)$.
Beweis: Wegen [mm] $C\subseteq [/mm] D$ ist $D$ ist die disjunkte Vereinigung von $C$ und [mm] $D\setminus [/mm] C$. Also [mm] $P(D)=P(D\setminus [/mm] C)+P(C)$. Dies ist wegen [mm] $P(D)<\infty$ [/mm] eine Gleichung endlicher Werte. Durch Subtraktion von $P(C)$ auf beiden Seiten folgt die Behauptung.
|
|
|
|