www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Interpolation und Approximation" - simpson Regel
simpson Regel < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

simpson Regel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:40 Sa 18.10.2014
Autor: mimo1

Aufgabe
Bestimme nährungsweise den wert des Intergrals [mm] \integral_{0}^{4}{x^2e^{-5x} dx} [/mm] durch vielfache Verwendung der Simpson Regel auf äquidistanten Intervalle. Begründen Sie Kurz, wie sich bei gleichem Aufwand(gemeseen in Funktionsauswertungen des Integranden) der Wert genauer approximieren lässt.

hallo,

ich habe erstmal den intervall [0,4] in gleich große teilintervalle zerlegt d.h
[0,1][1,2][2,3][3,4]. Dann habe ich jeweils auf die Teilintervalle die simpson regel angewendet.

simpson regel:
[mm] \integral_{x_0}^{x_0+h}{f(x) dx} \approx \bruch{h}{6}(f(x_0)+4f(x_0+h/2)+f(x_0+h)) [/mm]

man erhält dann: h=1
[mm] \bruch{1}{6}((f(0)+4f(1/2)+f(1))+(f(1)+4f(3/2)+f(2))+(f(2)+4f(5/2)+f(3))+(f(3)+4f(7/2)+f(4)) [/mm]
[mm] =\bruch{1}{6}(e^{\bruch{-5}{2}}+ 2e^{-5}+9e^{\bruch{-25}{2}}+8e^{\bruch{-10}{2}}+25e^{\bruch{-25}{2}}+18e^{\bruch{-15}{2}}+49e^{\bruch{-35}{2}}+16e^{-20}) [/mm]

ist es richtig was ich da gemacht habe?
den 2. Teil verstehe ich leider nicht was damit gemeint ist, kann mir das jemand erklären. dankeschön im voraus.

        
Bezug
simpson Regel: Antwort
Status: (Antwort) fertig Status 
Datum: 07:30 So 19.10.2014
Autor: DieAcht

Hallo mimo1,


> Bestimme nährungsweise den wert des Intergrals
> [mm]\integral_{0}^{4}{x^2e^{-5x} dx}[/mm] durch vielfache Verwendung
> der Simpson Regel auf äquidistanten Intervalle. Begründen
> Sie Kurz, wie sich bei gleichem Aufwand(gemeseen in
> Funktionsauswertungen des Integranden) der Wert genauer
> approximieren lässt.
>  hallo,
>  
> ich habe erstmal den intervall [0,4] in gleich große
> teilintervalle zerlegt d.h
>  [0,1][1,2][2,3][3,4]. Dann habe ich jeweils auf die
> Teilintervalle die simpson regel angewendet.
>  
> simpson regel:
>  [mm]\integral_{x_0}^{x_0+h}{f(x) dx} \approx \bruch{h}{6}(f(x_0)+4f(x_0+h/2)+f(x_0+h))[/mm]

So steht es bestimmt nicht in eurem Skript.

> man erhält dann: h=1
> [mm] \bruch{1}{6}((f(0)+4f(1/2)+f(1))+(f(1)+4f(3/2)+f(2))+(f(2)+4f(5/2)+f(3))+(f(3)+4f(7/2)+f(4)) [/mm]

Richtig.

> [mm] =\bruch{1}{6}(e^{\bruch{-5}{2}}+ 2e^{-5}+9e^{\bruch{-25}{2}}+8e^{\bruch{-10}{2}}+25e^{\bruch{-25}{2}}+18e^{\bruch{-15}{2}}+49e^{\bruch{-35}{2}}+16e^{-20}) [/mm]

Der eine oder andere Summand ist falsch.

> ist es richtig was ich da gemacht habe?

Ja.

> den 2. Teil verstehe ich leider nicht was damit gemeint
> ist, kann mir das jemand erklären. dankeschön im voraus.

Du bist oben durch zwölf Funktionsauswertungen auf eine Approxi-
mation gekommen. Bei der Betrachtung deiner Rechnung fällt auf,
dass wir zum Beispiel statt [mm] $f(1)+f(1)\$ [/mm] auch [mm] $2f(1)\$ [/mm] schreiben können.
Damit sparen wir hier insgesamt drei Funktionsauswertungen, die
wir benutzen können um die Anzahl der Intervalle zu erhöhen und
somit die Approximationen zu verbessern. Beschreibe demnach das
Problem noch einmal ausführlich und genau(!) und "kürze" das Ver-
fahren.

Übrigens kannst du durch zweimalige partielle Integration das
korrekte Ergebnis berechnen. Damit kannst du dir dann am Ende
den "Fehler" genauer anschauen. Allerdings kann ich mir vor-
stellen, das ihr schon Fehlerabschätzungen bezüglich der Ver-
fahren in der Vorlesung behandelt habt, sodass sich das auch
erübrigt. Es sollte trotzdem eine gute Übung darstellen.


Gruß
DieAcht

Bezug
                
Bezug
simpson Regel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:46 So 19.10.2014
Autor: mimo1

danke für deine hilfe:)

Bezug
                
Bezug
simpson Regel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:48 Mo 20.10.2014
Autor: mimo1

hallo, ich hätte dazu noch eine frage:
du schreibst durch das zusammenfassen der funktionsauswerungen  z.b bei f(1)+f(1) indem wir 2f(1) schreiben, können wir  an funktionsauswertungen sparen und die anzahl der intervall erhöhen sich und dadurch wird die approximierung verbesssert. aber meine fragen ist jetzt wie wirkt sich die verbesserung der approx. und die erhöhung der anzahl der intervalle durch die einsparung der funktionsauswerungen, da ich indem fall nichts verändere an den werten nur zusammenfasse z.B nehme f(1)=2 dann ist [mm] f(1)+f(1)=2+2=4=2\cdot 2=2\cdot [/mm] f(1)
ich hoffe meine frage ist verständlich herübergekommen

Bezug
                        
Bezug
simpson Regel: Antwort
Status: (Antwort) fertig Status 
Datum: 02:22 Di 21.10.2014
Autor: DieAcht


> hallo, ich hätte dazu noch eine frage:
>  du schreibst durch das zusammenfassen der
> funktionsauswerungen  z.b bei f(1)+f(1) indem wir 2f(1)
> schreiben, können wir  an funktionsauswertungen sparen

Ja.

> und
> die anzahl der intervall erhöhen sich und dadurch wird die
> approximierung verbesssert.

Nein. Durch das "Sparen" an den Funktionsauswertungen können wir
die Anzahl der Intervalle [mm] $N\$ [/mm] erhöhen, sodass wir eine bessere Ap-
proximation erhalten. Die Anzahl der Intervalle erhöhen zwar die
Funktionsauswertungen, aber bei der richtigen Anzahl der Inter-
valle wird die Anzahl der Funktionsauswertungen insgesamt nicht
größer als zuvor, sodass wir eventuell nicht nur an Funktions-
auswertungen sparen, sondern gleichzeitig auch die Approximation
verbessern.

> aber meine fragen ist jetzt wie
> wirkt sich die verbesserung der approx. und die erhöhung
> der anzahl der intervalle durch die einsparung der
> funktionsauswerungen, da ich indem fall nichts verändere
> an den werten nur zusammenfasse z.B nehme f(1)=2 dann ist
> [mm]f(1)+f(1)=2+2=4=2\cdot 2=2\cdot[/mm] f(1)
> ich hoffe meine frage ist verständlich herübergekommen

Siehe oben. Ich habe mit Absicht den Tipp gegeben von der Aufgabe
"wegzukommen" und das Problem allgemeiner zu betrachten.

1) [mm] $\IN\ni [/mm] N$-aquidistante Unterteilung von [mm] $[a,b]=[x_k,x_{k+1}]$ [/mm] mit [mm] h=\frac{b-a}{N} [/mm] und [mm] x_k=a+k*h. [/mm]

2) Demnach addiere

      [mm] \frac{h}{6}\left(f(x_k)+4*f(\frac{x_k+x_{k+1}}{2})+f(x_{k+1})\right) [/mm] für [mm] k=\{0,1,\ldots,N\} [/mm] (Simpsonregel).

3) "Kürze" obiges.

4) Berechne die Funktionsauswertungen vor und nach der Kürzung.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de