simultane Diagonalisierung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:36 Mo 27.03.2017 | Autor: | Franzi17 |
Aufgabe | Seien A,B ∈ [mm] Mat_m(K) [/mm] mit AB = BA.
a) Sei λ ∈ K und v ∈ Eig(A,λ). Zeigen Sie Bv ∈ Eig(A,λ).
b) Nehmen Sie an, dass A diagonalisierbar ist und dass dimEig(A,λ) ≤ 1 für alle λ ∈ K gilt. Zeigen Sie, dass es T ∈ GLm(K) gibt, so dass TAT−1 und TBT−1 Diagonalmatrizen sind |
Hallo,
die a) habe ich, denke ich gelöst. Bei b) komme ich leider nicht weiter.
Das sind meine Gedanken dazu:
Da A diagonalisierbar ist, gilt:
geom.Vielfachheit = algebraische Vielfachheit
Da die geometrische Vielfachheit mind. 1 sein muss, ist sie hier = 1
also kommt jedes [mm] \Lambda [/mm] einfach vor
und für jedes [mm] \Lambda [/mm] gibt es einen Eigenvektor v
da die algebraische Vielfachheit 1 ist, hat [mm] pA(\Lambda) [/mm] genau m verschiedene Nullstellen, also:
[mm] \Lambda_1, [/mm] ..., [mm] \Lambda_m
[/mm]
und dann existieren
[mm] v_1, [/mm] ..., [mm] v_m [/mm]
für jeden Eigenvektor zu jedem [mm] \Lambda [/mm] gilt: A Bv = [mm] \Lambda [/mm] Bv
nach Beweis von a)
da [mm] Eig(A,\Lambda) [/mm] = {Bv , B [mm] \in Mat_m(K)}
[/mm]
Stimmt das soweit?
Leider komme ich aber absolut nicht mehr weiter..
Wäre froh um einen Tipp. Danke!!
|
|
|
|
Hallo,
> Seien A,B ∈ [mm]Mat_m(K)[/mm] mit AB = BA.
> a) Sei λ ∈ K und v ∈ Eig(A,λ). Zeigen Sie Bv ∈
> Eig(A,λ).
> b) Nehmen Sie an, dass A diagonalisierbar ist und dass
> dimEig(A,λ) ≤ 1 für alle λ ∈ K gilt. Zeigen Sie,
> dass es T ∈ GLm(K) gibt, so dass TAT−1 und TBT−1
> Diagonalmatrizen sind
> Hallo,
> die a) habe ich, denke ich gelöst. Bei b) komme ich leider
> nicht weiter.
>
> Das sind meine Gedanken dazu:
> Da A diagonalisierbar ist, gilt:
> geom.Vielfachheit = algebraische Vielfachheit
> Da die geometrische Vielfachheit mind. 1 sein muss, ist
> sie hier = 1
> also kommt jedes [mm]\Lambda[/mm] einfach vor
> und für jedes [mm]\Lambda[/mm] gibt es einen Eigenvektor v
>
>
> da die algebraische Vielfachheit 1 ist, hat [mm]pA(\Lambda)[/mm]
> genau m verschiedene Nullstellen, also:
> [mm]\Lambda_1,[/mm] ..., [mm]\Lambda_m[/mm]
> und dann existieren
> [mm]v_1,[/mm] ..., [mm]v_m[/mm]
>
> für jeden Eigenvektor zu jedem [mm]\Lambda[/mm] gilt: A Bv =
> [mm]\Lambda[/mm] Bv
> nach Beweis von a)
Also hast du: Ist v Eigenvektor von A zum Eigenwert [mm]\lambda[/mm], so ist auch Bv Eigenvektor von A zum Eigenwert [mm]\lambda[/mm].
Da [mm]\lambda[/mm] nach Voraussetzung die geometrische Vielfachheit 1 hat, muss also Bv ein skalares Vielfaches von v sein.
Was kannst du damit über die Eigenvektoren von B sagen?
> da [mm]Eig(A,\Lambda)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
= {Bv , B [mm]\in Mat_m(K)}[/mm]
???
>
> Stimmt das soweit?
> Leider komme ich aber absolut nicht mehr weiter..
> Wäre froh um einen Tipp. Danke!!
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:49 Di 28.03.2017 | Autor: | Franzi17 |
Hallo, danke für die antwort!!
Ehrlich gesagt stehe ich glaub ziemlich auf dem schlauch. Die eigenvektoren von B müssen ja gleich denen von A sein sonst käme ja kein T zustande das beide konjugiert oder?
Aber wie kann ich das zeigen dass die eigenvektoren gleich sind? Oder bzw wie kann ich das daran sehen, dass Bv ein skalares Vielfaches ist?
Danke!!!
|
|
|
|
|
Hallo nochmal,
v und w=Bv liegen beide im Eigenraum von A zum Eigenwert [mm]\lambda[/mm], der ein eindimensionaler Unterraum von [mm]K^m[/mm] ist.
Daher müssen die beiden Vektoren linear abhängig sein und da v als Eigenvektor [mm]\ne 0[/mm] ist, gibt es einen Skalar [mm]\mu\in K[/mm] mit [mm]w=Bv=\mu v[/mm]. Das heißt aber nach Definition, dass v Eigenvektor auch von B ist.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:20 Mi 29.03.2017 | Autor: | Franzi17 |
Danke für die ausführliche Erklärung! Das habe ich jetzt verstanden.
Aber es heisst noch nicht das B diagonalisierbar sein muss oder?
Bei A [mm] \in Mat_m(K) [/mm] ist
Die geometrische = der algebraische Vielfachheit = 1
Also gibt es [mm] v1,....,v_m [/mm] , welche dann auch Eigenwerte zu B sind.
B ist auch [mm] \in Mat_m(K), [/mm] also ist die geometrische Vielfachheit auch =1
Ich hoffe meine Gedanken dazu stimmen bisher.
Aber dann müsste ich ja noch zeigen dass die algebraische Vielfachheit von B auch 1 ist oder?
Hast du dafür eine Idee?
Danke!
|
|
|
|
|
Hallo,
mit [mm]v_1,...,v_m[/mm] hast du eine Basis aus Eigenvektoren. Daraus folgt, dass [mm]U^{-1}BU[/mm] eine Diagonalmatrix ist, wenn U die Matrix mit den [mm]v_i[/mm] als Spalten ist. Dabei ist auch der Fall möglich, dass mehrere [mm]v_i[/mm] zum selben Eigenwert von B gehören.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:32 Mi 29.03.2017 | Autor: | Franzi17 |
Vielen Dank für die Hilfe!
|
|
|
|