www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - simultane Dialogisierung
simultane Dialogisierung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

simultane Dialogisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:55 Di 12.08.2014
Autor: manmath

Aufgabe
aus einem Skript:
Sind M und A beliebige symmetrische Matritzen und ist M positiv definit, so existiert stets eine nichtsinguläre Matrix G, so dass beide Matrizen M und A diagonalisiert werden können; G kann so gewählt werden, dass die Diagonalmatrix zu M die Eineitsmatrix I ist, es gilt dann:
^{t}G  M  G = I und ^{t}G A  G = D
sowie A G = M G D
(sorry das hochgestellte t (transponiert) vor G funktioniert hier nicht, unten aber)
Schreiben wir die Matrix G mittels ihrer Spalten als G = [mm] (g^{1} [/mm] ... [mm] g^{n}), [/mm] dann können die vorigen Gleichungen geschrieben werden als:
[mm] ^{t}g^{k}M g^{j} [/mm] =  [mm] \delta_{kj} [/mm] und [mm] Ag^{j}=\lambda_{j}M g^{j} [/mm]

Nur eine Frage zur letzten Zeile: wie kommt man von den Beziehungen zwischen den Matrizen M, A und G zu der Darstellung mittels Spaltenvektoren von G. Ich weiss nur, dass man Matrizenprodukte als Produkte von Zeilen- und Spaltenvektorenvektoren darstellen kann.

        
Bezug
simultane Dialogisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Sa 16.08.2014
Autor: felixf

Moin!

> aus einem Skript:
>  Sind M und A beliebige symmetrische Matritzen und ist M
> positiv definit, so existiert stets eine nichtsinguläre
> Matrix G, so dass beide Matrizen M und A diagonalisiert
> werden können; G kann so gewählt werden, dass die
> Diagonalmatrix zu M die Eineitsmatrix I ist, es gilt dann:
>  ^{t}G  M  G = I und ^{t}G A  G = D
>  sowie A G = M G D
>  (sorry das hochgestellte t (transponiert) vor G
> funktioniert hier nicht, unten aber)
>  Schreiben wir die Matrix G mittels ihrer Spalten als G =
> [mm](g^{1}[/mm] ... [mm]g^{n}),[/mm] dann können die vorigen Gleichungen
> geschrieben werden als:
>  [mm]^{t}g^{k}M g^{j}[/mm] =  [mm]\delta_{kj}[/mm] und [mm]Ag^{j}=\lambda_{j}M g^{j}[/mm]
>  
> Nur eine Frage zur letzten Zeile: wie kommt man von den
> Beziehungen zwischen den Matrizen M, A und G zu der
> Darstellung mittels Spaltenvektoren von G. Ich weiss nur,
> dass man Matrizenprodukte als Produkte von Zeilen- und
> Spaltenvektorenvektoren darstellen kann.

Verwende dafuer die folgende Formel: ist $X$ eine Matrix mit den Zeilen [mm] $x_1, \dots, x_n$ [/mm] und ist $Y$ eine Matrix mit den Spalten [mm] $y_1, \dots, y_n$, [/mm] dann hat $X [mm] \cdot [/mm] Y$ in der Zeile $i$ und Spalte $j$ den Eintrag [mm] $x_i y_j$. [/mm]

Wenn du das (evtl. mehrmals) auf [mm] ${}^t [/mm] G M G = I$ sowie $A G = M G D$ anwendest (und verwendest, dass der $(i,j)$-Eintrag von $I$ gleich [mm] $\delta_{ij}$ [/mm] ist und $D$ offenbar eine Diagonalmatrix mit [mm] $\lambda_i$ [/mm] an der Stelle $(i, i)$), dann kommst du auf die Gleichungen.

LG Felix




Bezug
                
Bezug
simultane Dialogisierung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:43 So 17.08.2014
Autor: manmath

Wenn man weiss, dass $ [mm] x_i y_j [/mm] $ als Skalarprodukt der beiden Vektoren einen Eintrag liefert ist und dann mal die Produkte der beteiligten Matrizen als Spalten/Zeilen aufschreibt, kommt man zu dem Ergebnis.
Danke für die Antwort
LG manmath

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de