www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - sinxcosx integrieren!
sinxcosx integrieren! < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

sinxcosx integrieren!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:12 So 05.10.2008
Autor: tobe

Aufgabe
  [mm] \bruch{1}{\pi} \integral_{0}^{2\pi}{|sinx|cosnx dx} [/mm]

Hallo,
ich bin gerade bei Fourierreihen und stoße dann auf folgendes Integral was ich nicht lösen kann. Im Skriptum wird folgendes angegeben:

[mm] \bruch{1}{\pi} \integral_{0}^{2\pi}{|sinx|cosnx dx} [/mm] =  [mm] \bruch{1}{\pi} \integral_{0}^{\pi}{sinxcosnx dx} [/mm] -  [mm] \bruch{1}{\pi} \integral_{0}^{\pi}{sin(x+\pi)cosn(x+\pi) dx} [/mm] =  [mm] \bruch{2}{\pi} \integral_{0}^{\pi}{sinxcosnx dx} [/mm] für n gerade

Ich verstehe nicht, wie man das Integral aufteilt und dann nur noch von [mm] 0bis\pi [/mm] Integriert! Zuerst dachte ich wegen dem - an partielle Integration aber das ist wohl falsch! Ausserdem verstehe ich nicht was mit dem Betrag passiert ist und woher das [mm] (x+\pi) [/mm] kommt! Könnt ihr mir bitte ein bisschen helfen?

        
Bezug
sinxcosx integrieren!: Antwort
Status: (Antwort) fertig Status 
Datum: 16:45 So 05.10.2008
Autor: pelzig

[mm] $\int_0^{2\pi}|\sin x|\cos [/mm] nx\ dx= [mm] \int_0^\pi|\sin x|\cos [/mm] nx\ dx + [mm] \int_\pi^{2\pi}|\sin x|\cos [/mm] nx\ dx$ sollte klar sein.
Für [mm] $x\in[0,\pi] [/mm] ist [mm]\sin x\ge 0[/mm], also kann man die Betragsstriche im Integranden des ersten Summanden weglassen. Für [mm] $x\in[\pi,2\pi]$ [/mm] ist [mm]|sin x|=-\sin x[/mm], also haben wir:
$= [mm] \int_0^\pi\sin x\cos [/mm] nx\ dx [mm] \red{+} \int_\pi^{2\pi}\sin x\cos [/mm] nx\ dx$
Jetzt substituieren wir im zweiten Integral [mm] $z=x-\pi$, [/mm] dadurchen ändern sich die Integralgrenzen und im Integranden entstehen die Terme [mm] $z+\pi$, [/mm] also hat man:
$= [mm] \int_0^\pi\sin x\cos [/mm] nx\ dx + [mm] \int_{\pi-\pi}^{2\pi-\pi}\sin z+\pi\cos n(z+\pi)\ [/mm] dz= [mm] \int_0^\pi\sin x\cos [/mm] nx\ dx + [mm] \int_0^\pi\sin z+\pi\cos n(z+\pi)\ [/mm] dz$

Gruß, Robert

Bezug
                
Bezug
sinxcosx integrieren!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:07 So 05.10.2008
Autor: tobe

Hi,
ich glaube du hasst in der letzten Zeile ein Minus vergessen und Klammern beim 2. Integral. Müsste das nicht heissen:

$ = [mm] \int_0^\pi\sin x\cos [/mm] nx\ dx - [mm] \int_{\pi-\pi}^{2\pi-\pi}\sin (z+\pi)\cos n(z+\pi)\ [/mm] dz= [mm] \int_0^\pi\sin x\cos [/mm] nx\ dx - [mm] \int_0^\pi\sin (z+\pi)\cos n(z+\pi)\ [/mm] dz $

Und was mich dann noch interessieren würde ist wie mein Prof auf folgendes kommt:

[mm] $\bruch{1}{\pi}\int_0^\pi\sin x\cos [/mm] nx\ dx - [mm] \bruch{1}{\pi}\int_0^\pi\sin (z+\pi)\cos n(z+\pi)\ [/mm] dz $ = [mm] \bruch{2}{\pi}\int_0^\pi\sin [/mm] x cosnx dx für n=gerade und = 0 für n =ungerade

Edit: Warum für n=ungerade das ganze 0 wird ist mir nun klar. Da ich dann immer sinx*ncosx habe und bei allen ungerade n sind sinus und kosinus entgegengesetzt und heben sich somit auf oder?
Danke

Bezug
                        
Bezug
sinxcosx integrieren!: Antwort
Status: (Antwort) fertig Status 
Datum: 20:26 So 05.10.2008
Autor: pelzig


> Hi,
>  ich glaube du hasst in der letzten Zeile ein Minus
> vergessen und Klammern beim 2. Integral. Müsste das nicht
> heissen:
>  
> [mm]= \int_0^\pi\sin x\cos nx\ dx - \int_{\pi-\pi}^{2\pi-\pi}\sin (z+\pi)\cos n(z+\pi)\ dz= \int_0^\pi\sin x\cos nx\ dx \red{+} \int_0^\pi\sin (z+\pi)\cos n(z+\pi)\ dz[/mm]

Ja das mit den Klammern stimmt, war aber auch so gemeint wie du es jetzt geschrieben hast. Aber am Ende steht da schon ein $+$ zwischen den Integralen, da man im zweiten Integranden ja [mm] $|\sin x|=-\sin [/mm] x$ hat, hab ich vorhin in dem Schritt vergessen hinzuschreiben.

Zu dem Rest... hab ich grad keine Ahnung :-)

Gruß, Robert

Bezug
                        
Bezug
sinxcosx integrieren!: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 So 05.10.2008
Autor: leduart

Hallo

> Und was mich dann noch interessieren würde ist wie mein
> Prof auf folgendes kommt:
>  
> [mm]\bruch{1}{\pi}\int_0^\pi\sin x\cos nx\ dx - \bruch{1}{\pi}\int_0^\pi\sin (z+\pi)\cos n(z+\pi)\ dz[/mm]
> = [mm]\bruch{2}{\pi}\int_0^\pi\sin[/mm] x cosnx dx für n=gerade und
> = 0 für n =ungerade
>  
> Edit: Warum für n=ungerade das ganze 0 wird ist mir nun
> klar. Da ich dann immer sinx*ncosx habe und bei allen
> ungerade n sind sinus und kosinus entgegengesetzt und heben
> sich somit auf oder?

so wie dus formulierst ists falsch! aber fuer ungerade n ist cosnx Punktsymetrisch zu [mm] \pi/2 [/mm] sinx sym. d.h. das Integral von 0 bis [mm] \pi/2 [/mm] und das von [mm] \pi/2 [/mm] bis [mm] \pi [/mm] sind entgegengesetzt gleich, also von 0 bis [mm] \pi [/mm]  insgesamt 0.
Gruss leduart



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de