www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - "span" - Frage
"span" - Frage < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

"span" - Frage: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:51 Mi 19.11.2008
Autor: extasic

Aufgabe
Es sei M ein Euklidischer Vektorraum mit dem inneren Produkt [mm] <\cdot,\cdot> [/mm] und M eine Teilmenge von V.

Zeigen Sie:
Ist M eine endliche Menge, so gilt [mm] M^{\perp} [/mm] = [mm] (spamM)^{\perp} [/mm]

Hallo!

Leider habe ich neben der Aufgabe an sich auch noch nicht ganz verstanden was ein "span" oder eine "lineare Hülle" eigentlich ist.

Könnt ihr mir bitte weiterhelfen, so dass ich diese Aufgabe lösen kann?

Vielen Dank!

        
Bezug
"span" - Frage: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:56 Mi 19.11.2008
Autor: Al-Chwarizmi


> Zeigen Sie:
>  Ist M eine endliche Menge, so gilt [mm]M^{\perp}[/mm] =
> [mm](spamM)^{\perp}[/mm]

spam:  bitte nicht auch noch in mathematischen Formeln !!


Bezug
        
Bezug
"span" - Frage: kein Spam
Status: (Antwort) fertig Status 
Datum: 12:02 Mi 19.11.2008
Autor: angela.h.b.


> Es sei M ein Euklidischer Vektorraum mit dem inneren
> Produkt [mm]<\cdot,\cdot>[/mm] und M eine Teilmenge von V.
>  
> Zeigen Sie:
>  Ist M eine endliche Menge, so gilt [mm]M^{\perp}[/mm] =
> [mm](spamM)^{\perp}[/mm]
>  Hallo!
>  
> Leider habe ich neben der Aufgabe an sich auch noch nicht
> ganz verstanden was ein "span" oder eine "lineare Hülle"
> eigentlich ist.

Hallo,

hier wäre es natürlich gut, würdest Du mal Eure Definition aus der Vorlesung posten, damit man das anhand dieser klären kann.

Der span einer Menge von Vektoren enthält alle Linearkombinationen, die man aus diesen Vektoren bilden kann.

Gruß v. Angela


Bezug
        
Bezug
"span" - Frage: Begriffe und Bezeichnungen
Status: (Antwort) fertig Status 
Datum: 14:53 Mi 19.11.2008
Autor: Al-Chwarizmi


> Es sei M ein Euklidischer Vektorraum     [notok]

das muss natürlich V heissen


> mit dem inneren
> Produkt [mm]<\cdot,\cdot>[/mm] und M eine Teilmenge von V.
>  
> Zeigen Sie:
>  Ist M eine endliche Menge, so gilt [mm]M^{\perp}[/mm] = [mm](spamM)^{\perp}[/mm]


Hallo,

meine vorherige Bemerkung zu "spam" war natürlich
nur scherzhaft gemeint.

Sei      [mm] M=\{m_1,m_2, ... ,m_n\} [/mm]

S=span(M) ist die Menge aller Vektoren, die sich
als Linearkombinationen von Vektoren aus M
darstellen lassen:

      [mm] S=\{s\in V\ |\ s=x_1*m_1+x_2*m_2+ ... + x_n*m_n\} [/mm]

S ist ein Untervektorraum von V.

Mit  [mm] M^{\perp} [/mm]  kann hier wohl nur die Menge aller Vektoren
in V gemeint sein, welche auf allen Elementen von M
normal stehen:

        $\ [mm] M^{\perp}=\{v\in V\ |\ \ =\ 0\ ,\ i=1,2, ... ,n\ \}$ [/mm]


[mm] S^{\perp} [/mm] wäre analog die Menge aller Vektoren in V, die
auf allen Elementen von S normal stehen:

        $\ [mm] S^{\perp}=\{v\in V\ |\ s\in S\Rightarrow\ \ =\ 0\ \}$ [/mm]

Nun soll man zeigen, dass  $\ [mm] M^{\perp}=S^{\perp}$ [/mm]  ist.
Dazu genügt es zu zeigen:

1.) Falls [mm] s\in S^{\perp}, [/mm] so ist [mm] s\in M^{\perp} [/mm]

2.) Falls [mm] v\in M^{\perp}, [/mm] so ist [mm] v\in S^{\perp} [/mm]

Vielleicht überlegst du dir zuerst einmal, welcher
dieser beiden Teile leichter nachzuweisen ist.

LG




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de