www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - spezielle Bilinearformen
spezielle Bilinearformen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

spezielle Bilinearformen: Aufgabe zu Bilinearformen
Status: (Frage) beantwortet Status 
Datum: 21:54 Fr 24.03.2006
Autor: Natalie2210

Aufgabe
Finde eine nicht ausgeartete, symmetrische Bilinearform f: [mm] R^2 [/mm] x [mm] R^2 [/mm] -> R , sodass f(x,x)=0 und x ungleich 0 ist.  

Hat irgenjemand eine Idee von einer solchen Bilinearform? ich habe es probiert mit dem skalarprodukt, dass leider nicht symmetrisch ist, und mit diversen Linearkombinationen der Komponenten der einzelnen Vektoren, aber ich scheitere entweder an der bedingung f(x,x) =0 und x ungleich 0, oder an der linearität!

Vielen Dank für produktive Vorschläge schon im voraus,
Natalie

PS: R ist bitte als der Körper der reellen Zahlen zu verstehen, und [mm] R^2 [/mm] ist "R hoch 2", also alle zweidimensionalen Vektoren mit Komponenten aus R..

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
spezielle Bilinearformen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:16 Fr 24.03.2006
Autor: felixf

Hallo Natalie!

> Finde eine nicht ausgeartete, symmetrische Bilinearform f:
> [mm]R^2[/mm] x [mm]R^2[/mm] -> R , sodass f(x,x)=0 und x ungleich 0 ist.
> Hat irgenjemand eine Idee von einer solchen Bilinearform?
> ich habe es probiert mit dem skalarprodukt, dass leider
> nicht symmetrisch ist, und mit diversen Linearkombinationen
> der Komponenten der einzelnen Vektoren, aber ich scheitere
> entweder an der bedingung f(x,x) =0 und x ungleich 0, oder
> an der linearität!

Meinst du, dass die Bedingung fuer alle $x [mm] \neq [/mm] 0$ gelten soll, oder nur fuer ein $x [mm] \neq [/mm] 0$? Ersteres ist Unmoeglich (schreib dazu die allgemeine Form einer symmetrischen Bilinearform auf und setz z.B. die Vektoren $x = (1, 0)$ und $x = (0, 1)$ ein), zweiteres duerfte kein Problem sein (nimm etwa [mm] $((x_1, y_1), (x_2, y_2)) \mapsto x_1 y_2 [/mm] + [mm] x_2 y_1$)... [/mm]

> PS: R ist bitte als der Körper der reellen Zahlen zu
> verstehen, und [mm]R^2[/mm] ist "R hoch 2", also alle
> zweidimensionalen Vektoren mit Komponenten aus R..

Und das ganze soll [mm] $\IR$-linear [/mm] sein, oder?

LG Felix


Bezug
                
Bezug
spezielle Bilinearformen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 08:16 Sa 25.03.2006
Autor: Natalie2210

naja, ich hab das schon so verstanden, dass es für alle x aus [mm] R^2 [/mm] gelten soll..  aber wie gesagt, entweder ich scheitere daran oder an der linearität. gibt es einen beweis, oder wie könnte ich es beweisen, dass es keine solche form geben kann?

lg,
Natalie

Bezug
                        
Bezug
spezielle Bilinearformen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:02 Sa 25.03.2006
Autor: felixf

Hallo Natalie!

> naja, ich hab das schon so verstanden, dass es für alle x
> aus [mm]R^2[/mm] gelten soll..  aber wie gesagt, entweder ich
> scheitere daran oder an der linearität. gibt es einen
> beweis, oder wie könnte ich es beweisen, dass es keine
> solche form geben kann?

Wie du einen Beweis machen kannst das es sowas nicht gibt stand doch schon in meinem Beitrag drinnen :)

Hinweis: eine allgemeine, symmetrische Bilinearform auf [mm] $\IR^2$ [/mm] hat die Form [mm] $((x_1,y_1),(x_2,y_2)) \mapsto a_1 x_1 y_1 [/mm] + [mm] a_2 x_2 y_2 [/mm] + b [mm] (x_1 y_2 [/mm] + [mm] x_2 y_1)$ [/mm] mit [mm] $a_1, a_2, [/mm] b [mm] \in \IR$. [/mm] Und jetzt setz mal die Vektoren ein die ich vorgeschlagen hatte... (Und dann noch den Vektor $(1, 1)$.)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de